I. CALL TO ORDER, ROLL CALL, AND DETERMINATION OF QUORUM

II. APPROVAL OF AGENDA

III. PLEDGE OF ALLEGIANCE

IV. CONSENT AGENDA
 Items on the consent agenda are considered to be routine and non-controversial by the Commission and will be approved by one motion. There will be no separate discussion of these items unless a Commission Member so requests, in which case the item will be removed from the Consent Agenda and considered in its normal sequence on the agenda.

A. MINUTES
 1. March 2, 2020, regular meeting minutes

B. INTRODUCTION FOR PUBLIC HEARING: QUASI-JUDICIAL MATTERS
 1. Resolution PC 20-08, a Conditional Use Permit request in accordance with MSB 17.60 – Conditional Uses, for the operation of a marijuana cultivation facility, located at 108 E. Schrock Road (Tax ID# 18N01W15C009); within Township 18 North, Range 1 West, Section 15, Seward Meridian. Public Hearing: April 6, 2020. (Applicant: Michael Gallagher, on behalf of Bubba Greens, Staff: Joe Metzger)
 2. Resolution PC 20-09, a Conditional Use Permit request in accordance with MSB 17.60 – Conditional Uses, for the operation of a marijuana retail facility, located at 5675 E. Blue Lupine Drive (Tax ID# 1807B01L011); within Township 17 North, Range 1 East, Section 17, Seward Meridian. Public Hearing: April 6, 2020. (Applicant: Chad Ragsdale, on behalf of MCC Flight, Staff: Joe Metzger)
C. INTRODUCTION FOR PUBLIC HEARING: LEGISLATIVE MATTERS

V. COMMITTEE REPORTS

VI. AGENCY/STAFF REPORTS

VII. LAND USE CLASSIFICATIONS

VIII. AUDIENCE PARTICIPATION (three minutes per person, for items not scheduled for public hearing)

IX. PUBLIC HEARING: QUASI-JUDICIAL MATTERS (Public Hearings shall not begin before 6:15 p.m.)

Commission members may not receive or engage in ex-parte contact with the applicant, other parties interested in the application, or members of the public concerning the application or issues presented in the application.

The Planning Commission members may submit questions to the Planning Commission Clerk concerning the following matters or request for more information from the applicant at the time of the introduction. All questions and requests submitted by the Commission shall be in writing and copies will be provided to the applicant and made available to all interested parties and the public upon request. Answers to questions and additional material requests will be addressed in the staff report for the public hearing.

X. PUBLIC HEARING: LEGISLATIVE MATTERS

A. Resolution PC 20-12, recommending Assembly adoption of MSB 17.68, Outdoor Shooting Facilities, in order to establish standards for commercial, educational, and nonprofit outdoor shooting facilities. (Staff: Alex Strawn)

XI. CORRESPONDENCE & INFORMATION

XII. UNFINISHED BUSINESS

XIII. NEW BUSINESS

XIV. COMMISSION BUSINESS

A. Adjudicatory (if needed)
B. Upcoming Planning Commission Agenda Items (Staff: Alex Strawn)
XV. DIRECTOR AND COMMISSIONER COMMENTS

XVI. ADJOURNMENT (Mandatory Midnight)

In order to be eligible to file an appeal from a decision of the Planning Commission, a person must be designated an interested party. See MSB 15.39.010 for definition of "Interested Party." The procedures governing appeals to the Board of Adjustment & Appeals are contained in MSB 15.39.010-250, which is available on the Borough Internet home page, http://www.matsugov.us, in the Borough Clerk's office, or at various libraries within the Borough.

Disabled persons needing reasonable accommodation in order to participate at a Planning Commission Meeting should contact the borough ADA Coordinator at 861-8432 at least one week in advance of the meeting.
The regular meeting of the Matanuska-Susitna Borough Planning Commission was held on January 6, 2020, at the Matanuska-Susitna Borough Assembly Chambers, 350 E. Dahlia Avenue, Palmer, Alaska. The meeting was called to order at 6:00 p.m. by Vice-Chair Mary Anderson.

I. CALL TO ORDER, ROLL CALL, AND DETERMINATION OF QUORUM

Planning Commission members present and establishing a quorum:
Ms. Mary Anderson, Assembly District #1, Vice-Chair
Mr. Jason Ortiz, Assembly District #2
Ms. Patricia Chesbro, Assembly District #3
Ms. Colleen Vague, Assembly District #4, Chair (arrived at 6:05 p.m.)
Mr. Sassan Mossanen, Assembly District #7

Planning Commission members absent and excused were:
Mr. Chris Elder, Assembly District #5
Mr. Stafford Glashan, Assembly District #6

Staff in attendance:
Mr. Alex Strawn, Development Services Manager
Ms. Susie Lemon, Assistant Borough Attorney
Mr. Joseph Metzger, Planner II
Ms. Mary Brodigan, Planning Commission Clerk

II. APPROVAL OF AGENDA

Vice-Chair Anderson inquired if there were any changes to the agenda.

MOTION: Commissioner Mossanen moved to pull Resolution PC 20-05, 2020 Subdivision Construction Manual and Resolution PC 20-07, Driveway Standards from the agenda to be reintroduced at a later date. The motion was seconded.

VOTE: The motion was approved without objection.

GENERAL CONSENT: The agenda was approved as amended without objection.

III. PLEDGE OF ALLEGIANCE

The pledge of allegiance was led by Ms. Janet Flaherty, a member of the audience.

IV. CONSENT AGENDA

A. Minutes

1. February 3, 2020, regular meeting minutes
B. INTRODUCTION FOR PUBLIC HEARING: QUASI-JUDICIAL MATTERS

(There were no introductions for quasi-judicial matters.)

C. INTRODUCTION FOR PUBLIC HEARING: LEGISLATIVE MATTERS

1. Resolution PC 20-12, recommending Assembly adoption of MSB 17.68, Outdoor Shooting Facilities, in order to establish standards for commercial, educational, and nonprofit outdoor shooting facilities. Public Hearing: March 16, 2020. (Staff: Alex Strawn)

Vice-Chair Anderson read the consent agenda into the record.

Vice-Chair Anderson inquired if there were any changes to the consent agenda.

GENERAL CONSENT: The consent agenda was approved without objection.

(Commissioner Vague entered the meeting at 6:05 p.m., and assumed the powers of the Chair.)

V. COMMITTEE REPORTS

(There were no committee reports.)

VI. AGENCY/STAFF REPORTS

(There were no agency/staff reports.)

VII. LAND USE CLASSIFICATIONS

(There were no land use classifications.)

VIII. AUDIENCE PARTICIPATION (Three minutes per person.)

The following person spoke regarding concerns with the public process: Mr. Eugene Carl Haberman.

(The meeting recessed at 6:12 p.m., and reconvened at 6:15 p.m.)

IX. PUBLIC HEARING: QUASI-JUDICIAL MATTERS (Public Hearings not to begin before 6:15 P.M.)

Commission members may not receive or engage in ex-parte contact with the applicant, other parties interested in the application, or members of the public concerning the application or issues presented in the application.

A. Resolution PC 20-06, an application under MSB 17.65 Variances, for an exception to the minimum 25-foot right-of-way setback requirement under MSB 17.55. The variance would allow the existing single-family home to remain 21.3 feet from the E. Rough Cut Circle
Chair Vague read the resolution title into the record.

Chair Vague:
- read the memorandum regarding quasi-judicial actions into the record;
- queried commissioners to determine if any of them have a financial interest in the proposed Conditional Use Permit (CUP);
- have had any ex parte contact with the applicant, members of the public, or interested parties in the proposed CUP; and
- if all commissioners are able to be impartial in a decision.

Mr. Metzger provided a staff report:
- staff recommended denial of the resolution.

Commissioners questioned staff regarding:
- clarification of how close the buildings are to the right-of-way (ROW);
- the process for obtaining a legal non-conforming status if the variance is not approved;
- whether the garage is eligible to be granted a legal non-conforming status;
- clarification of all of the options that the applicants have if the variance is not approved; and
- what was it that initiated this action.

Chair Vague invited the applicant or their representative to provide an overview of their application.

Ms. Janet Flaherty and Mr. Adam Copson, applicants, provided an overview of their application.

Commissioners questioned the applicant regarding whether they were aware of the location of the ROW when they built the garage.

Chair Vague opened the public hearing.

The following person spoke regarding concerns with the public process: Mr. Eugene Carl Haberman.

There being no one else to be heard, Chair Vague closed the public hearing and discussion moved to the Planning Commission.

MOTION: Commissioner Anderson moved to approve Resolution PC 20-06. The motion was seconded.

VOTE: The main motion failed unanimously.
1. **Resolution PC 20-10**, adopting findings of fact and conclusions of law to support the denial of Resolution PC 20-06.

Chair Vague read the resolution title into the record.

MOTION: Commissioner Anderson moved to approve Resolution PC 20-10. The motion was seconded.

Commissioner Anderson acknowledged the difficulty in failing this variance.

VOTE: The motion passed without objection.

X. PUBLIC HEARING LEGISLATIVE MATTERS

A. **Resolution PC 20-05**, supporting an ordinance amending MSB 43.05.015(B)(3) to adopt the 2020 Subdivision Construction Manual. *(Staff: Eileen Probasco)*

This item was pulled from the agenda during the Approval of the Agenda.

B. **Resolution PC 20-07**, recommending Assembly approval of an ordinance adopting MSB 11.12 Driveway Standards in order to ensure driveways within borough right-of-ways minimize negative impact to drainage, maintenance, and safety of the traveling public. *(Staff: Eileen Probasco)*

This item was pulled from the agenda during the Approval of the Agenda.

XI. CORRESPONDENCE AND INFORMATION

There was no correspondence and information.

XII. UNFINISHED BUSINESS

There was no unfinished business.

XIII. NEW BUSINESS

There was no new business.

XIV. COMMISSION BUSINESS

A. Adjudicatory *(if needed)*

B. Upcoming Planning Commission Agenda Items

Mr. Strawn provided a brief update on projects that will be coming before the Planning Commission.
XV. DIRECTOR AND COMMISSIONER COMMENTS

Ms. Brodigan reminded commissioners about the joint Assembly/Planning Commission Meeting scheduled for 6:00 p.m. on Tuesday, March 10, 2020.

Commissioner Chesbro stated that Mr. Metzger did a thorough job with the variance request.

Commissioner Mossanen:
• wished that the applicants had a better understanding of their other options; and
• noted that Mr. Metzger did a really good job in laying out the facts.

Commissioner Vague:
• reminded everyone to turn in their APOC (Alaska Public Offices Commission) statements;
• noted that commissioners do a great job preparing for meetings;
• decisions are made based on the information that is provided by staff;
• opined that everyone tries to be just and fair;
• stated her appreciation for the quality of information provided by staff even when the Planning Department is short-staffed;
• appreciates everyone that makes conscientious decisions on behalf of this community; and
• stated that she is proud to be a member of this board.

XVI. ADJOURNMENT

The regular meeting adjourned at 7:00 p.m.

COLLEEN VAGUE, Planning Commission Chair

ATTEST:

MARY BRODIGAN, Planning Commission Clerk

Minutes approved: _____
INTRODUCTION FOR PUBLIC HEARING

QUASI-JUDICIAL

Resolution No. PC 20-08

Bubba Greens
Marijuana Cultivation Facility CUP
108 E. Schrock Road

(Page 13 - 46)
Carefully read instructions and applicable borough code. Fill out forms completely. Attach information as needed. Incomplete applications will not be processed.

Application fee must be attached:

- $1,000 for Marijuana Retail Facility
- $1,000 for Marijuana Cultivation Facility

Prior to the public hearing, the applicant must also pay the mailing and advertising fees associated with the application. Applicants will be provided with a statement of advertising and mailing charges. Payment must be made prior to the application presentation before the Borough Planning Commission.

Required Attachments for a Marijuana Cultivation Facility:

- [A] Wastewater and Waste Material Disposal Plan – 17.60.160 (A)
- [B] Odor Mitigation and Ventilation Plan – 17.60.160 (B)
- [C] Hazardous Chemicals Information – 17.60.160 (C)
- [D] Security plan – 17.60.160 (D)

Required Attachments for Both Retail and Cultivation Facilities:

- Documentation demonstrating full compliance with applicable fire code – 17.60.150 (D) (2)

Subject Property: Township: 18W, Range: 1W, Section: 15, Meridian: Southeast
MSB Tax ID#: 218 NOI W 15 COO 9
SUBDIVISION: _______________, BLOCK(S): _______, LOT(S): C9
STREET ADDRESS: 108 E Schnack Rd
FACILITY / BUSINESS NAME: Bubba Greens

Ownership: A written authorization by the owner must be attached for an agent or contact person, if the owner is using one for the application. Is authorization attached? ☑ Yes ☐ No ☐ N/A

Name of Property Owner

Beata GALLAGHER
Mailing: 2511 Lyvonne
Anc. At 99502
Phone: Hm 727-1941 Fax
Wk ___________ Cell 727-1941
E-mail

Name of Agent / Contact for application

Michael GALLAGHER
Mailing: 2511 Lyvonne
Anc. At 99502
Phone: Hm ___________ Fax ___________
Wk ___________ Cell 727-7754
E-mail mg builders @gmail.com

Revised 4/4/2017
Site Plan – Attach a detailed, to scale, site plan clearly showing the following information:

<table>
<thead>
<tr>
<th>Proposed and existing structure(s) on the site. Indicate which structure(s) will be used for the proposed use. Dimensions and locations of all existing and proposed structures on the site in relationship to all property lines.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signage – Existing and Proposed.</td>
</tr>
<tr>
<td>Location and dimensions for all access points to and from the site to public rights-of-way or public access easements.</td>
</tr>
<tr>
<td>Buffering – Fences, vegetation, topography, berms, and any landscaping</td>
</tr>
<tr>
<td>Drainage</td>
</tr>
<tr>
<td>Vehicular and pedestrian circulation patterns.</td>
</tr>
<tr>
<td>Exterior site lighting.</td>
</tr>
<tr>
<td>Location and dimensions of parking areas to be provided</td>
</tr>
<tr>
<td>Scale and north arrow using standard engineering intervals such as 1" = 30', 1" = 50' or similar as required by project size.</td>
</tr>
</tbody>
</table>

Map – Attach a detailed, to scale, vicinity map clearly showing the following information:

<table>
<thead>
<tr>
<th>Identify all existing land uses within 1,000 feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale and north arrow using standard engineering intervals such as 1" = 30', 1" = 50' or similar as required by project size.</td>
</tr>
</tbody>
</table>

In order to grant a conditional use permit under MSB 17.60, the Planning Commission must find that each of the following requirements have been met. Explain the following in detail:

<table>
<thead>
<tr>
<th>Is the conditional use compatible with and will it preserve or not materially detract from the value, character and integrity of the surrounding area?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will the granting of the conditional use permit be harmful to the public health, safety, convenience and welfare?</td>
</tr>
<tr>
<td>Are sufficient setbacks, lot area, buffers and other safeguards being provided?</td>
</tr>
<tr>
<td>Does the conditional use fulfill all other requirements of MSB Chapter 17.60 pertaining to the conditional use in this section?</td>
</tr>
<tr>
<td>Describe measures taken to prevent any potential negative effect upon other properties in the area due to such factors as noise and odor.</td>
</tr>
<tr>
<td>Describe measures taken to reduce negative effects upon adjacent properties by:</td>
</tr>
<tr>
<td>- Increased property line and right-of-way buffers</td>
</tr>
<tr>
<td>- Planted berms and landscaping</td>
</tr>
<tr>
<td>- Site and building design features which contribute to the character of the surrounding area</td>
</tr>
<tr>
<td>Describe how this use is compatible with the character of the surrounding area.</td>
</tr>
</tbody>
</table>

Current status of State License application process – 17.60.150 (D) (1)
17.60.170 Standards for Marijuana Retail Facilities:

<table>
<thead>
<tr>
<th>Describe how the subject parcel is appropriate for the proposed conditional use. Include information detailing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The proximity of the proposed use to existing businesses;</td>
</tr>
<tr>
<td>• The proximity of parcels developed with residential uses;</td>
</tr>
<tr>
<td>• Whether the roads associated with the proposed use have been, or will be, appropriate for commercial use; and</td>
</tr>
<tr>
<td>• Proposed hours of operations.</td>
</tr>
</tbody>
</table>

Provide information showing minimum parking standards have been met as required by MSB 17.60.170 (B) and (C).

Floor Plan for Marijuana Retail Facilities – Attach a detailed, to scale, floor plan clearly showing the following information:

- Dimensions of all structures.
- Interior floor plans (specific location of the use or uses to be made of the development).
- Net floor area square footage calculations.

OWNER’S STATEMENT:

I am owner of the following property:

MSB Tax account #(s) 218 M01 W 15 009 and, I hereby apply for approval of a conditional use permit to operate a marijuana related facility on the property as described in this application.

I understand all activity must be conducted in compliance with all applicable standards of MSB 17.60 and with all other applicable borough and state.

I understand that other rules such as local, state and federal regulations, covenants, plat notes, and deed restrictions may be applicable and other permits or authorization may be required. I understand that the borough may also impose conditions and safeguards designed to protect the public’s health, safety and welfare and ensure the compatibility of the use with other adjacent uses.

I understand that it is my responsibility to identify and comply with all applicable rules and conditions, covenants, plat notes, and deed restrictions, including changes that may occur in such requirements.

I grant permission for borough staff members to enter onto the property as needed to process this application and monitor compliance. Such access will at a minimum, be allowed when the activity is occurring and, with prior notice, and at other times necessary to monitor compliance.

The information submitted in this application is accurate and complete to the best of my knowledge.

Signatures:

- **Bea Gallagher**
 - Signature: Property Owner
 - Printed Name: Bea Gallagher
 - Date: 10-7-2019

- **Michael Gallagher**
 - Signature: Agent
 - Printed Name: Michael Gallagher
 - Date: 10-7-2019

Revised 4/4/2017
October 6, 2019

Bea Gallagher
2511 Lyvona Ln.
Anchorage, AK 99502
907-727-1961 (cell)

To:
Mat-Su Borough
Planning and Land Use Department
350 East Dahlia Avenue
Palmer, AK 99645

Written Authorization to Appoint Agent for Conditional Use Permit

I, Bea Gallagher, as owner of 108 E Schrock, appoint Michael Gallagher as agent and contact person for any and all matters pertaining to the application and issuance of a conditional use permit for Bubba Greens, a planned marijuana cultivator.

Name of Property Owner Granting Authorization:
Bea Gallagher

Signature of Property Owner:
Bea Gallagher

Date:
10-6-2019
Attachment A
Wastewater and Waste Material Disposal Plan – 17.60.160 (A)

A. Overall Policy Statement - Wastewater: The Facility will be equipped with a septic system to process wastewater. The system will be engineered to meet all state and local requirements based on proposed site plan. Commercial wastewater from the growing operation will not be disposed of in the septic system; it will be used for surface irrigation of the property when it cannot be recycled.

B. Use of Water at the Facility: The Facility will use a hydroponic cultivation system in which water with added fertilizers will circulate continuously. Bubba Greens will reuse the water which will reduce the waste water from the Facility.

C. Overall Policy Statement - Waste Material Disposal: All marijuana waste will be rendered unusable at the Facility, within a restricted access area, and under video surveillance. Inventory records will be updated and appropriate notification to state authorities will be made within the required timeframe.
Attachment B
Odor Mitigation and Ventilation Plan – 17.60.160 (B)

A. Overall Policy Statement: Bubba Greens will comply with the above referenced borough code by using a ventilation system designed to adequately control odor from materially affecting neighboring properties. The Facility is located in an area with relatively low population density. One side of the property is adjacent to the Fitz Gravel Pit, a commercial use property.

B. Odor Control: The Facility will be compliant with all state and local regulations that apply to marijuana cultivation. Specifically, the Facility will have equipment to adequately ventilate air to the outside, while controlling odor. The ventilation system will be designed by a mechanical engineer and will employ activated charcoal filters to ensure adjacent properties are not materially affected. The activated charcoal filters will be maintained according to the manufacturer’s specifications.
A. **Overall Policy Statement:** Bubba Greens will store and dispose of fertilizers, pesticides, herbicides, and any other hazardous chemicals used at the Facility in compliance with all local, state, and federal laws. Nutrients and cleaning materials will be stored and disposed of in accordance with each manufacturer’s recommendations.

B. **Hazardous Chemical Assessment:** Bubba Greens will review the Material Data Safety Sheet for all hazardous chemicals used at the Facility and will comply with proper use and disposal, as specified.

C. **Federal Rules:** Bubba Greens will reference the Environmental Protection Agency’s publication, “Managing Hazardous Waste: A Guide for Small Businesses” for regulatory guidance on all hazardous chemicals used at the Facility.

D. **State of Alaska Rules:** Bubba Greens will comply with all requirements of the Alaska Department of Environmental Conservation.
Attachment D
Security plan – 17.60.160 (D)

A. Overall Policy Statement: It is Bubba Greens’ intent to comply with state and local laws regarding the security of the Facility. Employees will be required to review all security policies and sign an acknowledgement attesting to their understanding and commitment to compliance.

B. Video Surveillance: All restricted areas, entries to restricted areas, and exterior access points at the Facility will be monitored by video surveillance. Lighting will be sufficient to facilitate continuous video surveillance of exterior access points. Surveillance equipment and records will be stored in a locked space accessible only by licensee or agents authorized by license, law enforcement personnel, and agents of the Marijuana Control Board. Records will be kept for a minimum of 40 days or as directed by government authorities.

C. Alarm System: Alarm sensors are required on all exterior windows and doors to detect intrusions. Triggered alarms will be managed by a third-party service provider that offers continuous monitoring and alerting to law enforcement agencies.

D. Security Doors & Locks: All exterior entry points to the Facility will be secured by a metal door with commercial grade, non-residential, locks. All doors leading to a restricted area will have signage to indicate that the entrance leads to a restricted area, persons under the age of 21 are prohibited, and that only staff and authorized agents or visitors are permitted.
Attachment E
Detailed Descriptions - Compliance With Mat-Su Borough Code (MSB) 17.60

Is the conditional use compatible with and will it preserve or not materially detract from the value, character and integrity of the surrounding area?

This application for a conditional use permit is for an indoor marijuana cultivation facility (the Facility). The Facility will be a 2100 square foot warehouse with wood frame construction, which is similar to the size and construction of other structures in the immediate area. Additionally, the Facility will be located in the middle of the property which is heavily treed with Birch and Spruce. The Facility is located well beyond the minimum required property line set-backs and is over 180 feet away from the nearest public road at its closest point. There will be no outdoor processes related to the proposed use.

As a cultivation Facility, Bubba Greens expects minimal traffic. The number of vehicles traveling to the property is expected to be consistent with residential use properties in the immediate area. At this time, Bubba Greens expects to have three full time employees working on site.

The Facility will be compliant with all state and local regulations that apply to marijuana cultivation. Specifically, the Facility will have equipment to adequately ventilate air outside while controlling odor. The ventilation system will be designed by a mechanical engineer.

For these reasons, the Facility will not materially detract from the value, character, and integrity of the surrounding area.

Will the granting of the conditional use permit be harmful to the public health, safety, convenience and welfare?

The Facility and Bubba Greens will be operated in full compliance with state and local regulations that apply to marijuana cultivation facilities. This includes regulations pertaining to the following significant areas:

- Wastewater and Waste Material Disposal (Plan included as Attachment A)
- Odor Mitigation and Ventilation (Plan included as Attachment B)
- Hazardous Chemicals (Plan included as Attachment C)
Please see the attached letter requesting information pertaining to your application for Conditional Use Permit for the marijuana cultivation facility.

Respectfully,

Mark Whisenhunt
Planner II
Matanuska-Susitna Borough
Office: (907) 861-8527
mark.whisenhunt@matsugov.us
December 6, 2019

Michael Gallagher of
Bubba Greens LLC
2511 Lyvona Lane
Anchorage, AK 99502

Subject: Conditional Use Permit Application for Marijuana Cultivation Facility –
Incomplete
Location: 108 E. Schrock Road; Tax ID #18N0IW15C009

Dear Mr. Gallagher,

Borough staff has reviewed the application material submitted on October 9, 2019 for a Conditional Use Permit for a marijuana cultivation facility under MSB 17.60 on the above referenced property. It has been determined that the following information needs to be provided and/or clarified in order to process this request.

1. Site Plan:
 a. Please send the electronic version of the site plan(s). The small version submitted makes it difficult to do a thorough review.

2. Wastewater and waste material disposal plan:
 a. The wastewater and waste material disposal plan is insufficient. Please provide specific details on how wastewater and waste material disposal will be in full compliance with ADEC regulations. Please note that ADEC usually does not allow commercial wastewater to be disposed of in septic systems. Please call me if you have questions on this topic.

3. Hazardous Chemical Information:
 a. Will nutrients and cleaning materials be stored and disposed of in accordance with each manufacturer’s recommendations? Please update your narrative.

4. MSB 17.60.160 requires your security plan to include education for employee on security measures. Please update the security plan portion of your narrative.

5. What is the estimated number of employees for the proposed operation? Please update your narrative.
6. Will the filters be maintained in accordance with the manufacturer’s recommendations? Please update your narrative.

7. Please provide the approved plan review certificate from the Fire Marshal’s office.

8. Attachment E of the narrative appears to be unfinished.

9. Please provide the State of Alaska Driveway issued for the access onto this property.

10. Will there be any outdoor processes related to the proposed use? Please update your narrative.

11. Please provide a map showing land uses within 1,000 feet of the subject property. I have attached a blank map for your convenience.

12. Will exterior lighting be downward directional and shielded to prevent spillage onto the adjacent properties? Please update your narrative.

Once the items above have been addressed and we have determined the application to be complete, staff will begin the public notice process. Should you have any questions or require additional information, please feel free to contact me at the above mailing address, phone: 861-8527, or email: mark.whisenhunt@matsugov.us. Thank you for your time and consideration on this matter.

Respectfully,

Mark Whisenhunt, Planner II
Development Services Division
Matanuska-Susitna Borough
Hi Mark,

I have attached updates in response to your request. There are two items I still need to gather and I will send those as soon as possible: The Fire Marshall Approval should be any day. I plan to contact the State of Alaska to obtain copies of existing driveway permits Monday.
On Fri, Dec 6, 2019 at 1:24 PM Mark Whisenhunt <Mark.Whisenhunt@matsugov.us> wrote:

Please see the attached letter requesting information pertaining to your application for Conditional Use Permit for the marijuana cultivation facility.

Respectfully,

Mark Whisenhunt
Planner II
Matanuska-Susitna Borough
Office: (907) 861-8527
mark.whisenhunt@matsugov.us

--
MG Construction
(907) 727-7754
This map is solely for informational purposes only. The Borough makes no express or implied warranties with respect to the accuracy, function, or capabilities of the map or the suitability of the map for any particular purpose beyond those originally intended by the Borough. For information regarding the full disclaimer and policies related to acceptable uses of this map, please contact the Matanuska-Susitna Borough GIS Division at 907-681-7601.

Date: 12/6/2019
This map was automatically generated using Geocortex Essentials.

This map is not to be used for navigation. This map is solely for informational purposes only. The Borough makes no express or implied warranties with respect to the character, function, or capabilities of the map or the suitability of the map for any particular purposes beyond those originally intended by the Borough. For information regarding the full disclaimer and policies related to acceptable use of this map, please contact the Matanuska-Susitna Borough GIS Division at 907-661-7656.
This map is not to be used for navigation. This map is solely for informational purposes. The Borough makes no express or implied warranties with respect to the character, function, or capabilities of the map or the suitability of the map for any particular purpose beyond those originally intended by the Borough. For information regarding the full disclaimer and policies related to acceptable uses of this map, please contact the Matanuska-Susitna Borough GIS Division at 907-861-7558.

Note: This map was automatically generated using Geocortex Essentials.
LOCATION
ADDRESS: 108 E SCHROCK RD
CITY, STATE: WASILLA, AK
ZONING: N/A
LEGAL: TOWNSHIP 18N RANGE 291,852
SECTION 108
SF 15 LOT C9
Road

DESCRIPTION OF PROJECT: NEW WOOD FRAMED TWO STORY STRUCTURE ON CONCRETE SLAB, 1-HOUR FIRE PROTECTION RATING.

GENERAL HAZARDS
V. TYPES OF CONSTRUCTION
A. TYPE VA CONSTRUCTION SHALL HAVE THE FOLLOWING 1-HOUR FIRE RESISTANCE RATING WHERE APPLICABLE:
 - EXTERIOR WOOD FRAMING: 1-HOUR RATED
 - INTERIOR WALLS MEASURED BY WALKING DISTANCE.

II. FIRE PROTECTION SYSTEMS
I. SMOKE DETECTORS:
 - REQUIRED TO DETECT SMOKE NOT NEEDED TO ACTIVATE SIREN OR ALERT OCCUPANTS WHERE USE OF SIRENS IS PROHIBITED.

III. FIRE EXTINGUISHERS
A. PROVIDE FIRE EXTINGUISHERS IN ACCORDANCE WITH LOCAL FIRE DEPARTMENT'S REQUIREMENTS.

IV. EXIT SIGNS
A. REQUIRED WHERE MULTIPLE EXIT REQUIRED, DISTANCE TO EXIT WHERE MULTIPLE: 200 FT (IBC T1016.2)

V. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30": DOORS SHALL NOT PROJECT MORE THAN 4" INTO WALKWAY.

VII. FIRE PROTECTOR RATING (IBC T602): 1-HOUR RATED CONSTRUCTION

VIII. INTERIOR FINISHES
A. TABLE 803.9

IX. FIRE PROTECTION SYSTEMS
A. PORTABLE FIRE EXTINGUISHERS: REQUIRED

X. ACCESSIBILITY
A. RAMPS: N/A

XII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XIV. ACCESSIBILITY
A. RAMPS: N/A

XV. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XVI. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XVII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XVIII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XIX. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XX. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXI. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXIII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXIV. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXV. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXVI. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXVII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXVIII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXIX. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXX. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXI. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXIII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXIV. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXV. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXVI. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXVII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXVIII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XXXIX. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XL. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLI. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLIII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLIV. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLV. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLVI. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLVII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLVIII. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

XLIX. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

L. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

M. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

N. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

O. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

P. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

Q. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

R. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

S. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

T. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

U. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

V. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

W. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

X. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

Y. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'

Z. MEANS OF EGRESS
A. MEANS OF EGRESS SHOWN NOT TO BE LESS THAN 30" WHERE REQUIRED TO EXIT, EXCEPT TO ACCESS MEP, 2'
Site Data:
LOCAL: TOWNSHIP 18 N, RANGE 1 W
SECTION 15, T18N R1W
ADDRESS: 108 E SCHROCK RD.
CITY, STATE: WASILLA, AK
ZONE: N/A
LOT SIZE: 291,852 SF
PARCEL: 22760

NOTE: USE HALF INDICATED SCALE FOR 11X17 DRAWINGS
1. COORDINATE WORK OF ALL TRADES
2. COORDINATE DRAWINGS OF WORKING AREAS WITH CLOSE TOLERANCES
3. VERIFY LOCATION OF UTILITIES AND EXISTING CONDITIONS.
4. ADJUSTMENT TO SPRINKLER HEAD N/A
5. ADJUSTMENT TO EMERGENCY ALARM N/A

2. EXISTING CONDITIONS (NOT USED)

3. CONCRETE CONCRETIONS TO BE DESIGNED AND INSTALLED AS PER SUBMITTAL DRAWINGS

4. MASONRY (NOT USED)

5. METALS (NOT USED)

6. WOOD, PLASTIC COMPOSITES (NOT USED)

7. THERMAL & MOISTURE PROTECTION
 - ROOF: 4-1/2" CLAY SHINGLE, 2880 SF
 - WALLS: ABOVE GRADE: 10" CONCRETE + 4" BRICK, BELOW GRADE: 4-1/2" CONCRETE + 4" BRICK
 - FLOORS: 8" CONCRETE SLAB ON GRADE, EXPANSION JOINT 6"uppert
 - OPAL PLACED FREQUENCY DEPENDS ON LOCAL CODES
 - OPAL PLACED FREQUENCY DEPENDS ON LOCAL CODES

8. VAPOR RETARDER: INTERIOR INSULATION LINER TO FUNCTION AS CLASS I VAPOR RETARDER, ALLOWING NO GREATER THAN 1 PERM.

9. AIR BARRIERS: SHALL BE IMPERMEABLE TO MOISTURE INFLATION BUT PERMEABLE TO VAPOR EVAHUST. SUBSTRATE (PLYWOOD, EXTERIOR DRYLINT, ETC.) MUST BE COMPLETELY DRY PRIOR TO INSTALLATION OF AIR BARRIERS.

10. METAL ROOF PANELS
 - THE INSTALLATION OF METAL ROOF PANELS SHALL COMPLY WITH THE PROVISIONS OF THE SECTION.
 - METAL ROOF PANELS SHALL BE SELECTED BASED ON THE SUPPORT TO BE PROVIDED BY THE APPROVED MANUFACTURER'S FASTENERS, THE MINIMUM SLOPE FOR LAPPED, NON-INSULATED METAL ROOF PANELS WITH APPLIED LAP SEALANT SHALL BE ONE-HALF UNIT VERTICAL ON A 12 UNITS HORIZONTAL (1/12) SLOPE.
 - LAP SEALANTS SHALL BE APPLIED IN ACCORDANCE WITH THE APPROVED MANUFACTURER'S INSTALLATION MATERIAL STANDARDS. METAL SHEET ROOF COVERING SYSTEMS THAT INCORPORATE SUPPORTING STRUCTURAL MEMBERS SHALL BE DESIGNED FOR SEISMIC CATEGORY D

11. ROOF COVERING TYPE STANDARD APPLICATION: STEEL ASTMA 834. PANT SYSTEMS IN ACCORDANCE WITH ASTM A 769 SHALL BE APPLIED OVER STEEL PRODUCTS WITH CORROSION RESISTANT COATINGS COMPLIANCE WITH ASTM A 792, ASTM A 975, ASTM A 483 OR ASTM A 653.

12. GLAZING LOADS FOR RAIN FALL PER HOUR ZONE
 - FLOOR SPACE OF COVERS 58°F IS PERPENDICULAR ROOF DEPTH + 4 FT, AREA SHOWN 1,000 SQ FT, MINIMUM SLOPE OF GUTTERS TO BE 1/4" FOR 1/4" SLOPE & MAXIMUM WIDTH OF GUTTERS TO BE 4" FOR MAXIMUM 2,800 SQ FT DRAINAGE, MINIMUM DIMENSIONS OF PAIN LEADES = 1/4"X1/2"X1/16"

13. OPENINGS
 - DOOR HARDWARE: ALL FINISHES TO BE STAINLESS, CHROME, OR BRUSHED NICKEL. SEE DRAWINGS FOR SPECIFIC HARDWARE SCHEDULES. INSTALL HARDWARE AS NOTED IN DOOR HARDWARE SCHEDULE BEST PRODUCTS OF HAGAR, SCHLAGE, LCN.

14. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT EXCEPT WHEN LOCKED FROM EGRESS SIDE, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

15. PASSAGE LOCK, DOES NOT LOCK ON EITHER SIDE, EITHER LEVER OPERATES LATCHBOLT AT ALL TIMES.

16. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, EXCEPT WHEN LOCKED FROM EGRESS SIDE. LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

17. PASSAGE LOCK, DOES NOT LOCK ON EITHER SIDE, EITHER LEVER OPERATES LATCHBOLT.

18. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

19. PASSAGE LOCK, DOES NOT LOCK ON EITHER SIDE, EITHER LEVER OPERATES LATCHBOLT.

20. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

21. DOOR HARDWARE: ALL FINISHES TO BE STAINLESS, CHROME, OR BRUSHED NICKEL. SEE DRAWINGS FOR SPECIFIC HARDWARE SCHEDULES. INSTALL HARDWARE AS NOTED IN DOOR HARDWARE SCHEDULE BEST PRODUCTS OF HAGAR, SCHLAGE, LCN.

22. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

23. PASSAGE LOCK, DOES NOT LOCK ON EITHER SIDE, EITHER LEVER OPERATES LATCHBOLT.

24. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

25. PASSAGE LOCK, DOES NOT LOCK ON EITHER SIDE, EITHER LEVER OPERATES LATCHBOLT.

26. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

27. PASSAGE LOCK, DOES NOT LOCK ON EITHER SIDE, EITHER LEVER OPERATES LATCHBOLT.

28. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.

29. PASSAGE LOCK, DOES NOT LOCK ON EITHER SIDE, EITHER LEVER OPERATES LATCHBOLT.

30. BATHROOM PRIVACY LOCK, EITHER LEVER OPERATES LATCHBOLT, LOCKED POSITION MAY BE SELECTED OR MAY RESET EVERY ENTRY.
4 Guardrail Section

2 Stair Detail, Bottom

3 Stair Detail, Top

1 Level 2 Floor Plan

KEY - SYMBOL - LEGEND

- NEW EXTERIOR WALL
- NEW INTERIOR WALL
- NEW PLUMBING WALL
- FIRE EXTINGUISHER 2A:10BC MOUNT 48" ABOVE MEASURED TO GRIP
- MOUNT 45° AFF (MEASURED TO GRIP)
- EXIT SIGN
- CO2 MONITOR & ALARM
- EMERGENCY LIGHT 90 MINUTE BATTERY
- EXTERIOR EXPOSED LIGHT
- OSHA ACCESS LADDER

NOTE: USE HALF INDICATED SCALE FOR 11X17 DRAWINGS
ROOFING NOTES:
SLOPE = 4" IN 12" MINIMUM
MATERIAL: ASPHALT ROOFING SHINGLES
FURNISH COMPLETE SYSTEM
ICE SHIELD WITHIN 3' OF EXTERIOR WALL
INSTALL PER MANUFACTURER'S RECOMMENDATIONS FOR 10 YEAR WARRANTY
FLASH ALL PENETRATIONS AND WALL INTERSECTIONS
REQUIRED VENTING = 1/150
ROOF = 2,160 SF
REQUIRED VENTING = 14.4 SF OR 2.074 SI
72' LENGTH X EACH SIDE
24' LENGTH X EACH SIDE
REQUIRED RIDGE VENTING = 1.320 SI OR 14.9 SF PER LF
PROVIDE 1 1/4" RIDGE VENT FOR 15 SI PER LF
PROVIDE 7/8" ROOF BLOCK FOR 7.85 SI PER LF
PROVIDE 1 1/4" RIDGE VENT FOR 15 SI PER LF
SUBMITTAL PACKAGE REQUIRED
NOTE: USE HALF INDICATED SCALE FOR 11X17 DRAWINGS
1-HOUR ROOF ASSEMBLY
- ROOFING MATERIAL (TBD)
- STRUCTURAL SHEATHING
- GYPSUM, TYPE X, 1-1X8 TREATED FASCIA
- BATT INSULATION, R-38 MIN.
- 7/8" RESILIENT CHANNEL, 12" O.C.
- 2 LAYERS, 5/8" GYPSUM, TYPE X
- DOUBLE TOP PLATE
- DBLE. FLASHING
- P.T. BASE PLATE

2 LAYERS, 5/8" GYPSUM, TYPE X

FLOOR ASSEMBLY (UL L501)
- 1/2" SUBFLOOR
- 3/4" SHEATHING
- 2X6 STUDS, 16" O.C.
- 5/8" GYPSUM, TYPE X

3 LAYERS OF 3/8"
- 1 LAYER 3/8"
- 2 LAYERS OF 3/8"
- 1 LAYER 1/2"
- 2 LAYERS 5/8"
- 3 LAYERS 3/4"

NOTE: USE HALF INDICATED SCALE FOR 11X17 DRAWINGS
Real Property Detail for Account: 18N01W15C009

Site Information
Account Number: 18N01W15C009
Parcel ID: 22760
TRS: S18N01W15
Abbreviated Description: TOWNSHIP 18 N RANGE 1W SECTION 15 LOT C9

Site Address
108 E SCHROCK RD

Ownership
Primary Owner's Address: 2511 LYRONA LN ANCHORAGE AK 99502

Appraisal Information
Year Land Appraised Bldg. Appraised Total Appraised
2019 $70,400.00 $5,600.00 $76,000.00
2018 $70,400.00 $11,500.00 $81,900.00
2017 $70,400.00 $11,600.00 $82,000.00

Building Information
Structure 0 of 1
Business: Residential Garage
Use: Residential
Design: None
Construction Type: None
Grade: None
Building Appraisal: $3600

Building Item Details
Building Number 0
Description: Garage (10.1) - 11D

Tax/Billing Information
Year Certified Zone Mill Tax Billed
2019 Yes 0041 15.149 $1151.33
2018 Yes 0041 15.069 $0.00
2017 Yes 0041 15.07 $0.00

Tax Account Status
Status: Tax Balance
Current: $575.88

Land and Miscellaneous
Gross Acreage: 6.70
Taxable Acreage: 6.70
Assembly District: 006
Assembly District 006: 10-010 136 WEST LAKES FSA

1 Total Assessed is net of exemptions and deferments, rest, penalties, and other charges posted after Last Update Date are not reflected in balances.
2 If account is in foreclosure, payment must be in certified funds.

https://myproperty.matsugov.us/myproperty.aspx?id=22760
September 26, 2019

Daniel Clift
Determine Design
903 W Northern Lights Ste. 206
Anchorage, AK 99503

SUBJECT: Bubba Greens (108 E Schrock Rd.) - Full Plan Review
CITY: Wasilla
PLAN REVIEW: 2019Anch1785
TYPE OF CONSTRUCTION: VA
OCCUPANCY: F-1
2012 INTERNATIONAL BUILDING AND FIRE CODE

Dear Daniel Clift:

This letter is to acknowledge receipt of your plans and application for plan review for the subject facility. A plan review number has been assigned as indicated. The plan review fee is required to be paid prior to the review. To help keep our files current and expedite the review, your submittal of the fee within fifteen (15) days will be appreciated.

The plan review fee is $1,265.29. Please make your check, money order or cashier’s check payable to the State of Alaska. To ensure that the check or money order reaches us in a timely manner, please include “Fire and Life Safety - Plan Review Bureau” in the mailing address.

13 AAC 50.027 prohibits the beginning of any construction, alteration, or repair to building regulated by the State Fire Marshal until plans and specifications have been reviewed and approved.

If you have any questions regarding this matter, please contact us at the address above.

Sincerely,

Pam Bowden
Office Assistant II
PERMIT CENTER – FEE RECEIPT FORM

Property Location: 188 F. Schroetko
Applicant: Michael Gallagher

<table>
<thead>
<tr>
<th>USE PERMITS {100,000.000.341.300}</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.35 Public Display of Fireworks</td>
<td>$25.00</td>
</tr>
<tr>
<td>8.40.010 Liquor License - Alcohol & Marijuana Control Office (AMCO) Referrals for Matanuska Susitna Borough Review of Issuance, renewal or transfer (location, owner)</td>
<td>$100.00</td>
</tr>
<tr>
<td>8.41.010 Marijuana License - Alcohol & Marijuana Control Office (AMCO) Referrals for Matanuska Susitna Borough Review of Issuance, renewal or transfer (location, owner)</td>
<td>$100.00</td>
</tr>
<tr>
<td>8.52 Temporary Noise Permit</td>
<td>$500.00</td>
</tr>
<tr>
<td>8.55 Special Events Permit</td>
<td>$500.00</td>
</tr>
<tr>
<td>500 – 1000 Attendees</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>1000+ Attendees</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>8.55 Special Events Permit Site Monitor Fee / Per Day</td>
<td>$300.00</td>
</tr>
<tr>
<td>17.02 Mandatory Land Use Permits</td>
<td>Residential Non-habitable PERMIT CENTER</td>
</tr>
<tr>
<td>Commercial/Industrial</td>
<td>$150.00</td>
</tr>
<tr>
<td>17.29 Flood Damage Prevention Development Permit</td>
<td>$100.00</td>
</tr>
<tr>
<td>17.29 Flood Damage Prevention Development Permit - Variance</td>
<td>$500.00</td>
</tr>
<tr>
<td>17.30.040 Earth Materials Extraction Admin. Permit</td>
<td>$500.00</td>
</tr>
<tr>
<td>17.30.050 Earth Materials Extraction CUP</td>
<td>$1000.00</td>
</tr>
<tr>
<td>17.36 Residential Planned Unit Development Application - Concept Plan - up to 50 Lots Additional Lots or tracts being created - Per Lot</td>
<td>$500.00</td>
</tr>
<tr>
<td>17.48 Mobile Home Park Permit Application</td>
<td>$500.00</td>
</tr>
<tr>
<td>17.52 Residential Land Use District App (Rezone)</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.52 Conditional Use Permit Application</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.55 Shoreline Setback Exception Application</td>
<td>$300.00</td>
</tr>
<tr>
<td>17.60 Conditional Use Permit Application</td>
<td>$1000.00</td>
</tr>
</tbody>
</table>

Revised: 3/29/2019
Commercial/Industrial Core Area Conditional Use Permit
- **Cost:** $1000.00

Coal Bed Methane
- **Cost:** $1000.00

Conditional Use Permit for Racetracks
- **Cost:** $1000.00

Variance
- **Cost:** $1000.00

Tall Structures - Network Improvement Permit
- **Cost:** $100.00
- **Nonconforming Use:** $200.00
- **Administrative Permit:** $500.00
- **Conditional Use Permit:** $1000.00

Regulation of Alcoholic Beverage Use Permit Application
- **Cost:** $1000.00

Multi-Family Land Use Permit – add $25.00 for each additional unit beyond 5 units.
- **Cost:** $500.00

Single-Family Residential Land Use District CUP
- **Cost:** $1000.00

Large Lot Single-Family Residential Land Use District
- **Conditional Use Permit Application:** $1000.00

Nonconforming Structures (Amnesty)
- **Pre-Existing Legal Nonconforming (Grandfather):** $300.00

Regulation of Adult Businesses – Conditional Use Permit
- **Cost:** $1000.00

Right-of-Way Fees:
- **Driveway:** $50.00
- **Driveway Deposit (100.226.100):** $150.00
- **Construction:** $200.00
- **Utility (Application Fee = $100 ~ Distance Fee $0.25/per lineal foot):** $150.00
- **Encroachment:** $150.00
- **Construction Bond (100.227.000):** $300.00

Platting Pre-Application Conference:
- **Pre-Application Fee:** $50.00

Fees:
- **Flood Plain Development Survey CD:** $10.00
- **CD/DVD/DVD-R:** $7.50
- **Construction Manual/Title 43:** $5.00
- **Plat Map/Tax Map Copies/Mylar:** $5.00
- **Color Maps:** $12.00
- **Xerox Copies (BW = $0.25 ~ Color $1.00/page 11X17 Color $1.75/page):** $10.00
- **Advertising Fees:** $10.00
- **Cultural Resources Books or Maps:** $10.00
- **Citation Payment (If sent to collections – use total due from Courtview):** $10.00
- **Thumb Drive: 2GB = $5, 4GB = $8, 8GB = $10; 16GB = $15; 32GB = $20:** $10.00

Total Amount Paid: $1000.00

Date: 10-10-19
Receipt #: 91359047

Revised: 3/29/2019
INTRODUCTION FOR PUBLIC HEARING
QUASI-JUDICIAL

Resolution No. PC 20-09

MCC Flight
Marijuana Retail Facility CUP
5675 E. Blue Lupine Drive

(Page 47 - 84)
CONDITIONAL USE PERMIT FOR
MARIJUANA RELATED FACILITIES - MSB 17.60

Carefully read instructions and applicable borough code. Fill out forms completely. Attach information as needed. Incomplete applications will not be processed.

Application fee must be attached:

☒ $1,000 for Marijuana Retail Facility
☐ $1,000 for Marijuana Cultivation Facility

Prior to the public hearing, the applicant must also pay the mailing and advertising fees associated with the application. Applicants will be provided with a statement of advertising and mailing charges. Payment must be made prior to the application presentation before the Borough Planning Commission.

Required Attachments for a Marijuana Cultivation Facility:

☒ Wastewater and Waste Material Disposal Plan – 17.60.160 (A)
☒ Odor Mitigation and Ventilation Plan – 17.60.160 (B)
☒ Hazardous Chemicals Information – 17.60.160 (C)
☐ Security plan – 17.60.160 (D)

Required Attachments for Both Retail and Cultivation Facilities:

☐ Documentation demonstrating full compliance with applicable fire code – 17.60.150 (D) (2)

Subject Property: Township: S17, Range: E01, Section: E17, Meridian: Second Meridian
MSB Tax ID# 1807 B 01 E17
SUBDIVISION: Twinhome BLOCK(S): 1 LOT(S): 11
STREET ADDRESS: 5675 E Blue Lupine Dr
FACILITY / BUSINESS NAME: MCC Flight

Ownership: A written authorization by the owner must be attached for an agent or contact person, if the owner is using one for the application. Is authorization attached? ☐ Yes ☐ No ☒ N/A

Name of Property Owner

Name of Agent / Contact for application

Mailing: 7490 S Padlock Dr
Wasilla Ak 99654
Phone: Hm 360.991.4631 Fax
Wk Cell 360 991 4631
E-mail takeowner @ outlook.com

Revised 4/4/2017 Permit# 176020190010
<table>
<thead>
<tr>
<th>Site Plan – Attach a detailed, to scale, site plan clearly showing the following information:</th>
<th>Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed and existing structure(s) on the site. Indicate which structure(s) will be used for the proposed use. Dimensions and locations of all existing and proposed structures on the site in relationship to all property lines.</td>
<td></td>
</tr>
<tr>
<td>Signage – Existing and Proposed.</td>
<td></td>
</tr>
<tr>
<td>Location and dimensions for all access points to and from the site to public rights-of-way or public access easements.</td>
<td></td>
</tr>
<tr>
<td>Buffering – Fences, vegetation, topography, berms, and any landscaping</td>
<td></td>
</tr>
<tr>
<td>Drainage</td>
<td></td>
</tr>
<tr>
<td>Vehicular and pedestrian circulation patterns.</td>
<td></td>
</tr>
<tr>
<td>Exterior site lighting.</td>
<td></td>
</tr>
<tr>
<td>Location and dimensions of parking areas to be provided</td>
<td></td>
</tr>
<tr>
<td>Scale and north arrow using standard engineering intervals such as 1” = 30’, 1” = 50’ or similar as required by project size.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map – Attach a detailed, to scale, vicinity map clearly showing the following information:</th>
<th>Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify all existing land uses within 1,000 feet.</td>
<td></td>
</tr>
<tr>
<td>Scale and north arrow using standard engineering intervals such as 1” = 30’, 1” = 50’ or similar as required by project size.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In order to grant a conditional use permit under MSB 17.60, the Planning Commission must find that each of the following requirements have been met. Explain the following in detail:</th>
<th>Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the conditional use compatible with and will it preserve or not materially detract from the value, character and integrity of the surrounding area?</td>
<td></td>
</tr>
<tr>
<td>Will the granting of the conditional use permit be harmful to the public health, safety, convenience and welfare?</td>
<td></td>
</tr>
<tr>
<td>Are sufficient setbacks, lot area, buffers and other safeguards being provided?</td>
<td></td>
</tr>
<tr>
<td>Does the conditional use fulfill all other requirements of MSB Chapter 17.60 pertaining to the conditional use in this section?</td>
<td></td>
</tr>
<tr>
<td>Describe measures taken to prevent any potential negative effect upon other properties in the area due to such factors as noise and odor.</td>
<td></td>
</tr>
<tr>
<td>Describe measures taken to reduce negative effects upon adjacent properties by:</td>
<td></td>
</tr>
<tr>
<td>• Increased property line and right-of-way buffers</td>
<td></td>
</tr>
<tr>
<td>• Planted berms and landscaping</td>
<td></td>
</tr>
<tr>
<td>• Site and building design features which contribute to the character of the surrounding area</td>
<td></td>
</tr>
<tr>
<td>Describe how this use is compatible with the character of the surrounding area.</td>
<td></td>
</tr>
<tr>
<td>Current status of State License application process – 17.60.150 (D)(1)</td>
<td></td>
</tr>
</tbody>
</table>

Revised 4/4/2017

Permit# ___________________________
17.60.170 Standards for Marijuana Retail Facilities:

Describe how the subject parcel is appropriate for the proposed conditional use. Include information detailing:

- The proximity of the proposed use to existing businesses;
- The proximity of parcels developed with residential uses;
- Whether the roads associated with the proposed use have been, or will be, appropriate for commercial use; and
- Proposed hours of operations.

Provide information showing minimum parking standards have been met as required by MSB 17.60.170 (B) and (C).

Floor Plan for Marijuana Retail Facilities

Attach a detailed, to scale, floor plan clearly showing the following information:

- Dimensions of all structures.
- Interior floor plans (specific location of the use or uses to be made of the development).
- Net floor area square footage calculations.

OWNER'S STATEMENT:

I am owner of the following property:

MSB Tax account #(s) and, I hereby apply for approval of a conditional use permit to operate a marijuana related facility on the property as described in this application.

I understand all activity must be conducted in compliance with all applicable standards of MSB 17.60 and with all other applicable borough and state.

I understand that other rules such as local, state and federal regulations, covenants, plat notes, and deed restrictions may be applicable and other permits or authorization may be required. I understand that the borough may also impose conditions and safeguards designed to protect the public's health, safety and welfare and ensure the compatibility of the use with other adjacent uses.

I understand that it is my responsibility to identify and comply with all applicable rules and conditions, covenants, plat notes, and deed restrictions, including changes that may occur in such requirements.

I grant permission for borough staff members to enter onto the property as needed to process this application and monitor compliance. Such access will at a minimum, be allowed when the activity is occurring and, with prior notice, and at other times necessary to monitor compliance.

The information submitted in this application is accurate and complete to the best of my knowledge.

Signature: Property Owner

Printed Name

Date

Signature: Agent

Printed Name

Date

Revised 4/4/2017

Permit# __________________

Page 3 of 3
TOPOGRAPHY NOTE

1. TOPOGRAPHY DERIVED FROM MATANUSKA-SUSITNA BOROUGH LIDAR TOPOGRAPHY MAP 17602765 DATED 2011. HORIZONTAL DATUM IS BASED ON NAD83.
2. CONTOURS ARE IN 5 FOOT INTERVALS AND ARE BASED ON NAVO 88 GEOID VERTICAL DATUM.
3. THIS LOT HAS BEEN RE-CONTOURED IN THE PROPOSED BUILDING LOCATION.

NOTES:
1. PRELIMINARY FIELD WORK PERFORMED THIS DATE 03/08/19 & 09/03/19.
2. THE FINAL SEPTIC AREA IS TO BE DETERMINED IN THE FIELD WITH THE VERIFICATION OF SOILS AND NEIGHBORING WELLS.
3. THE FINAL BUILDING LOCATION AND FINISHED FLOOR ELEVATION IS TO BE DETERMINED IN THE FIELD BY THE CONTRACTOR.

EXCLUSION NOTE: IT IS THE RESPONSIBILITY OF THE OWNER OR BUILDER, PRIOR TO CONSTRUCTION, TO VERIFY PROPOSED BUILDING GRADE RELATIVE TO FINISHED GRADE AND UTILITIES CONNECTIONS, AND TO DETERMINE THE EXISTENCE OF ANY EASEMENTS, COVENANTS, OR RESTRICTIONS WHICH DO NOT APPEAR ON THE RECORDED SUBDIVISION PLAT.
Matsu Conditional Use Permit for Retail Marijuana Facility – MCC Flight

5675 E Blue Lupine Dr
Wasilla, AK 99654
Borough Tax ID #1807B01L011
AK DOT Driveway Permit #29614

Proposed and existing use structures on site: Attached surveyed map shows our building which will contain the Retail Marijuana Facility and Limited Cultivation Facility. Attached maps also show the inside of the facility. Current setback from E Blue Lupine ROW is +/- 58', SE rear lot line +/- 26'.

Signage Existing and Proposed All signage will meet state requirements as listed under,

3 AAC 306.360. Restriction on advertising of marijuana and marijuana products (a) A retail marijuana store may have not more than three signs, visible to the general public from the public right-of-way, that identify the retail marijuana store by its business name. A sign may be placed in the retail marijuana store's window or attached to the outside of the licensed premises. The size of each sign may not exceed 4,800 square inches. (b) An advertisement for marijuana or a marijuana product may not contain a statement or illustration that (1) is false or misleading; (2) promotes excessive consumption; (3) represents that the use of marijuana has curative or therapeutic effects; (4) depicts a person under 21 years of age consuming marijuana; or (5) includes an object or character, including a toy, a cartoon character, or any other depiction designed to appeal to a person under 21 years of age, that promotes consumption of marijuana. (c) A retail marijuana store may not place an advertisement for marijuana or a marijuana product, except as provided in (a) of this section, (1) within 1,000 feet of the perimeter of any child-centered facility, including a school, a child care facility or other facility providing services to children, a playground or recreation center, a public park, a library, or a game arcade that is open to persons under 21 years of age; or in a publicly owned or operated property; (2) within 1,000 feet of a substance abuse or treatment facility; or (4) on a campus for postsecondary education. (d) A retail marijuana store may not give away coupons as promotional materials, or conduct promotional activities such as games or competitions to encourage the sale of marijuana or marijuana products.

Location and Dimensions of all Public Access and ROW: Survey map shows the property has public access ROW from E Blue Lupine Dr as permitted by AK DOT Driveway Permit #29614.
Buffering: There is a hillside on the 3 sides of the property offering buffer. Vehicular and Pedestrian Patterns: The lot will meet all Fire Codes for access as advised and required by the State Fire Marshall. There is plenty of room for vehicles to safely enter and exit this property.

Exterior Site Lighting: Lighting will meet Alaska requirements for Security and lighting as notated on our facility map.

3 AAC 306.715. Security alarm systems and lock standards (a) Each licensee, employee, or agent of a marijuana establishment shall display an identification badge issued by the marijuana establishment at all times when on the marijuana establishment's licensed premises. (b) The licensed premises of a marijuana establishment must have (1) exterior lighting to facilitate surveillance; (2) a security alarm system on all exterior doors and windows; and (3) continuous video monitoring as provided in 3 AAC 306.720. (c) A marijuana establishment shall have policies and procedures that (1) are designed to prevent diversion of marijuana or marijuana product; (2) prevent loitering; (3) describe the use of any additional security device, such as a motion detector, pressure switch, and duress, panic, or hold-up alarm to enhance security of licensed premises; and (4) describe the actions to be taken by a licensee, employee, or agent of the marijuana establishment when any automatic or electronic notification system alerts a local law enforcement agency of an unauthorized breach of security. (d) A marijuana establishment shall use commercial grade, nonresidential door locks on all exterior entry points to the licensed premises.

Location and dimensions of Parking areas: As notated on our accompanying map, we have parking on the north west side of the building, 20' x 39' with two parking spots and one ADA compliant parking spot.

Is the conditional use compatible with and will it preserve or not materially detract from the value, character and integrity of the surrounding area?

Blue Lupine is a commercial frontage road with businesses from Seward Meridian to Trunk RD. Our business should not detract from the commercial use of this Parks Hwy frontage Rd.

Will the granting of the conditional use permit be harmful to the public health, safety, convenience and welfare? No. All State security requirements will be in place and followed. All requirements under 3 AAC 306 will be followed at all times so no issues with the general public will arise.

Are sufficient setbacks, loft area, buffers and other safeguards being provided? As provided in our survey maps all setbacks are properly met. We are a commercial business on a Parks Hwy frontage rd, Blue Lupine. There are commercial businesses from Trunk Rd to Seward Meridian on Blue Lupine Dr.
Does the conditional use fulfill all the other requirements of MSB Chapter 17.60 pertaining to the conditional use in this section? Yes

Describe measures taken to prevent any potential negative effect upon other properties in the area due to such factors as noise and odor. We will comply with all parts of 3 AAC 306 and is outlined within our State of Alaska application.

Describe measures taken to reduce negative effects upon adjacent properties: The area of the Wasilla we will be operating is of commercial nature on Blue Lupine Dr. Many of our neighbors have stopped in as we have been remodeling and constructing the property to say hello and let us know they appreciate the cleaning up of the property we purchased and that we are adding value to the overall community. That is the goal of MCC Flight, to be a valuable member of our community and offer a product that Alaska and the Matsu Borough have asked for access to, in a clean, safe, and comfortable environment.

Describe how this use is compatible with the character of the surrounding area. We are in a highly commercial stretch of a Parks Hwy frontage Rd, Blue Lupine. There are commercial businesses from Trunk Rd to Seward Meridian on Blue Lupine.

Describe how the subject parcel is appropriate for the proposed conditional use. We are in a highly commercial stretch of the Parks Hwy frontage Rd, Blue Lupine. There are commercial businesses from Trunk Rd to Seward Meridian on Blue Lupine. There are residences located on a commercial frontage road that abut the property. Proposed hours of operation will be 8am-12am midnight, seven days a week, Monday through Sunday.

Floor Plan for Marijuana Retail Facilities.

Loitering Diversion Plan:

Signs will be posted stating no loitering. All employees will be trained and required to diverse loitering by stating to any loitering individual(s) to leave the premises or they will be required by company policy to call local law enforcement. If a non-conformance should arise they should refrain from conflict and wait for local law enforcement to arrive.

On site Consumption:

MCC Flight did not apply for an on-site consumption permit with the state. So per 3 AAC 306.310 Acts Prohibited at Retail Marijuana Store (b) (2)

(2) allow a person to consume marijuana or a marijuana product on the retail Marijuana store’s licensed premises, except as provided in 3 AAC 306.305 (a) (4)
Once the state and borough has resolved the issue of regulating on-site consumption we it will be revisited as to whether it is a viable option for our business and community.

Diversion Prevention Plan:

MCC Flight will have strict rules regarding moving inventory to, from and throughout the licensed premises to effectively prevent diversion by an employee, visitor or customer. We currently have video surveillance cameras throughout the location of the licensed premises monitoring entryways, floor activity, restricted areas along with breech alarms notifications on doorways and the alarm security system has extensive room for further expansion of alarms if deemed necessary. Most if not all employees will be family or well trusted respectable friends and will required to keep their personal belongings in an employee only area and there will be no marijuana or product in that area. They will have knowledge of the prevention of diversion on how to spot diversion and how to report suspicious activity on or around the licensed premise. Employees will have knowledge that they are being monitored always while in the facility to facilitate in employee safety. As well as no photographs or videos may be taken by employees or visitors in restricted access zones to prevent any malicious activity. Visitors are never permitted to touch any cannabis or cannabis products or equipment for any reason, and will be escorted off the licensed premise if they do so. Only authorized employees will be moving cannabis and cannabis products through the license premise.

Activities Outside the facility:

Activities outside the facility would be nothing any other business in the borough would be allowed to do for their business. Current Alaska State regulations would be followed. I won’t say no activities will happen outside the facility, but all activities will follow the State Statutes.

3 AAC 306.360 Restriction on advertising of marijuana and marijuana products (d)

(d) A retail marijuana store may not use giveaway coupons as promotional materials, or conduct promotional activities such as games or competitions to encourage sale of marijuana or marijuana products.

Security Plan:

MCC Flight will be using a high-quality security and surveillance systems equipped with motion detectors, panic and breech alarms, fire and smoke alarms. All alarms will alert a central monitoring company by Vivint. All surveillance and data will be stored on a NVR system with 20 TB hard drive with room for added hard drives with a 1080-pixel clarity which is well above industry standards. Data will be stored on the hard drive for 40 plus days 24 hours a day 7 days a week as well as storing data with a secure private server. The system is also equipped with a battery backup systems to keep all systems functioning during a power outage. All surveillance equipment is stored in a mounted and locked security case within a restricted area that is under surveillance and both the restricted area and the security case are equipped with audible notification and alarms as well as security alarms when the alarm system is set after business hours. This restricted area door is equipped with key pad lock that
auto locks after entry. MCC Flight will be using bullet cameras with high pixel clarity as well as infrared technology capable of capturing high quality images up to 120 ft. in complete darkness.

All entry doors will be steel frame security doors. All doors to Restricted access areas are with commercial grade locks that will be closed and locked during and after business hours. The facility has no outside windows. All doors and entry points will remain locked during business hours except for the one public entrance door and when an employee is entering or exiting a restricted area.

Exterior Lighting:

The facility has lights every 20’, they are movable LED 150w lights and does not spill on to adjacent properties the rear lighting is to facilitate video surveillance required in 3 ACC 306.720. All lights illuminate on a dusk to dawn sensor. All lights are pointed down to meet the required 20’ recording of cameras. The lights illuminate our lot for security purposes but are not out of character with the other commercial properties located in the area, or the illumination of the Borough Fire Station up the road. All our exterior lights have assorted options such as being set to motion activation, dusk to dawn or continuous and will be set up to best facilitate safety and security as in 3 ACC 306.720. These lights our and facing downward to avoid spillage to adjacent properties and to give best possible and all lighting on the exterior were pre-existing as this is a commercial property and to my knowledge have never been an issue to adjacent properties. All lighting is just under the eaves of the roof which varies from ~8’-~20’ depending on their location on the building.

Access to property:

AK DOT Driveway Permit #29614. Copy will be provided with packet.

Waste Disposal:

MCC Flight will store, dispose of and manage any solid or liquid waste generated by the licensed premises in compliance with federal, state and local laws and regulations following DEC regulation 18 AAC 60. (reference,3 AAC 306.735)

Matanuska Cannabis Company will give AMCO 3 days (72 hours) notice in the METRC inventory tracking system before making any marijuana or marijuana product unusable and disposing of it, we will also keep a record of the final disposal destination of the waste in company inventory tracking systems. Waste will be stored in the waste disposal area in 5 gallon buckets after 72 hours of the notification and approval by the AMCO the waste will be grinded or shredded and mixed with saw dust, soil, coffee grounds or other compostable matter and shredded paper in a 50/50 mix with the marijuana or marijuana product. A written log will be maintained in the disposal area of waste that has been made unusable stating notification date and time, type of product and employee name and the log will be also scanned at into a company computer at least once a month. Before transporting the waste the buckets will be sealed and then transported to a AMCO approved disposal site or a local dump since all waste is biodegradable. MCC Flight foresees minimal if any waste that will need to be disposed of. The disposal room is under video surveillance in an adequate fashion to provide a clear, unobstructed view of employees rendering marijuana or marijuana products unusable.
17.60.170 STANDARDS FOR MARIJUANA RETAIL FACILITIES

(A) Marijuana retail facilities shall only be approved upon finding by the commission that the proposed facility is located on a parcel that is appropriate for commercial use. At a minimum, the commission shall consider:

(1) proximity of the proposed use to existing businesses;

(2) proximity to parcels developed for residential use; and

(3) whether roads associated with the proposed use have been, or will be, appropriate for commercial use.

(B) The minimum number of parking spaces for retail facilities shall be one space per 350 square feet of net floor area. Each parking space shall be at least 20 feet in length, ten feet wide, and have a vertical clearance of at least seven feet.

(C) Parking spaces shall be provided to comply with current Americans with Disabilities Act guidelines.

(Ord. 16-003(SUB), § 4 (part), 2016)

Per our Site plan performed by Farmers Surveying We will meet all the requirements for Parking, ADA Parking and setbacks.

Building sq footage will be 952 sq ft, and would need 2.72 parking spots. Per the Site plan we will have more than 3+ Parking spots, with one being ADA compliant for a van, 11’ wide parking, with a 5’ access aisle.
Please see the attached letter requesting information pertaining to your application for Conditional Use Permit. Thank you.

Respectfully,

Mark Whisenhunt
Planner II
Matanuska-Susitna Borough
Office: (907) 861-8527
mark.whisenhunt@matsugov.us
December 20, 2019

Chad Ragsdale
dba MCC Flight
2490 S. Paddock Drive
Wasilla, Alaska 99654

SUBJECT: Conditional Use Permit Application – Request for Required Information
LOCATION: 5675 E. Blue Lupine Drive (Tax ID: 1807B01L011)

Dear Mr. Ragsdale,

Borough staff has reviewed the application material and the site plan(s) submitted on November 27, 2019 for a Conditional Use Permit to operate a marijuana retail facility under MSB 17.60 on the above referenced property. It has been determined that the following information needs to be provided and/or clarified in order to process this request:

1) The narrative answers are very general and say will comply with Alaska Statute. Please provide specific information in the answers. We can meet in person if you would like to discuss this in further detail. In order to evaluate the use, we need operation specific information. Providing information pertaining to:
 a) Activities which may occur outside (if none, please note it). More specifically, will any outside activities involve amplified noise?
 b) Waste disposal information speaks to disposing as “AMCO approved” sites. Please provide details on the type and location of these sites.
 c) Please detail specific sign size, type (i.e. lighting) and location information.
 d) What is the estimated number of employees for the operation?

2) As-built:
 a) Per our conversation, I am still expecting an updated as-built/site plan to be submitted.

3) Site /Floor Plan:
 a) The submitted site / floor plan is of poor quality. Some of the parking spaces and legend are cut off. Please submit a better copy or bring in the original and we can make a copy at your convenience.

Please note that I will be out of the office until January 2, 2020. Once an application has been determined to be complete, staff will begin the public notice process. Should you have any
questions or require additional information, please feel free to contact me at the above mailing address, phone: 861-8527, or email: mwhisenhunt@matsugov.us. Thank you for your time and consideration on this matter.

Respectfully,

Mark Whisenhunt
Planner II
Matanuska-Susitna Borough
1) The narrative answers are very general and say will comply with Alaska Statute. Please provide specific information in the answers. We can meet in person if you would like to discuss this in further detail. In order to evaluate the use, we need operation specific information. Providing information pertaining to:

a) Activities which may occur outside (if none, please note it). More specifically, will any outside activities involve amplified noise? – We may want to have an outside event one day in the future but would get any required permitting from the borough for amplified noise.

b) Waste disposal information speaks to disposing as “AMCO approved” sites. Please provide details on the type and location of these sites. – AMCO approved sites just refers to the use of the any Matanuska Susitna Dump facility, but we will primarily use the dump located off Palmer- Wasilla Highway. We will follow the state prescribed regulations for all disposal of products as outlined below:

3 AAC 306.740. Waste disposal (a) A marijuana establishment shall store, manage, and dispose of any solid or liquid waste, including wastewater generated during marijuana cultivation production, processing, testing, or retail sales, in compliance with applicable federal, state, and local statutes, ordinances, regulations, and other law. (b) Marijuana waste must be rendered unusable for any purpose for which it was grown or produced before it leaves a marijuana establishment. Marijuana waste includes (1) marijuana plant waste, including stalks, leaves, and stems that have not been processed with solvent; (2) solid marijuana sample plant waste in the possession of a marijuana testing facility; (3) marijuana or a marijuana product that has been found by the licensee unfit for sale or consumption; (4) expired marijuana products; and (5) other waste as determined by the board. (c) A marijuana establishment shall (1) give the board notice, on a form prescribed by the board, not later than three days before making the waste unusable and disposing of it; however, the director may authorize immediate disposal on an emergency basis; (2) record the waste in the marijuana inventory tracking system required under 3 AAC 306.730; and (3) keep a record through the marijuana inventory tracking system of the final destination of marijuana waste made unusable. (d) Marijuana plant waste must be made unusable by grinding the marijuana plant waste and mixing it with at least an equal amount of other compostable or non-compostable materials. A marijuana establishment may use another method to make marijuana waste unusable if the board approves the method in advance. Material that may be mixed with the marijuana waste includes (1) compostable materials including food waste, yard waste, vegetable based grease or oils, or other wastes approved by the board when the mixed material can be used as compost feedstock or in another organic waste method such as an anaerobic digester with approval of any applicable local government entity; or (2) non-compostable materials including paper waste, cardboard waste, plastic waste, oil, or other wastes approved by the board when the mixed material may be delivered to a permitted solid waste facility, incinerator, or other facility with approval of any applicable local government entity. (e) If marijuana or a marijuana product is found by, or surrendered to, a law enforcement officer including a peace officer or an airport security officer, the officer may dispose of the marijuana or marijuana product as provided in this section or by any method that is allowed under any applicable local ordinance.
c) Please detail specific sign size, type (i.e. lighting) and location information. – Current plans are for a sign on the roof of the building, lighted by LED or Fluorescent lighting. Sign will meet the guidelines outlined by the state, 4800 sq inches or less, so the sign will be no larger than 4800 sq inches. We will most likely use Broadway Signs in Anchorage for the fabrication and install of the sign. We will ensure that the sign will not interfere with any of the residential homes in the area beyond the illumination factors of the Harley Davidson sign and the State High intensity freeway lights on the Parks highway located 500’ from our facility.

d) What is the estimated number of employees for the operation? – We currently plan to have about 8-12 employees for this location.
1) The narrative answers are very general and say will comply with Alaska Statute. Please provide specific information in the answers. We can meet in person if you would like to discuss this in further detail. In order to evaluate the use, we need operation specific information. Providing information pertaining to:

a) Activities which may occur outside (if none, please note it). More specifically, will any outside activities involve amplified noise? – We may want to have an outside event one day in the future but would get any required permitting from the borough for amplified noise.

b) Waste disposal information speaks to disposing as “AMCO approved” sites. Please provide details on the type and location of these sites. – AMCO approved sites just refers to the use of the any Matanuska Susitna Dump facility, but we will primarily use the dump located off Palmer- Wasilla Highway.

c) Please detail specific sign size, type (i.e. lighting) and location information. – Current plans are for a sign on the roof of the building, lighted by LED or Fluorescent lighting. Sign will meet the guidelines outlined by the state, 4800 sq inches or less, so the sign will be no larger than 4800 sq inches. We will most likely use Broadway Signs in Anchorage for the fabrication and install of the sign.

d) What is the estimated number of employees for the operation? – We currently plan to have about 8-12 employees for this location.
Hey Chad,

Please see the attached letter requesting additional information on your CUP request. As always, if you have any questions or need clarification on anything, don’t hesitate to contact me.

Respectfully,

Joe Metzger
MSB Planner II
907-861-7862
January 31, 2020

Chad Ragsdale
dba MCC Flight
2490 S. Paddock Drive
Wasilla, Alaska 99654

SUBJECT: Conditional Use Permit Application – Request for Required Information
LOCATION: 5675 E. Blue Lupine Drive (Tax ID: 1807B01L011)

Dear Mr. Ragsdale,

Borough staff has reviewed the application material and the site plan(s) submitted on November 27, 2019 and additional application information submitted on January 17, 2020 for a Conditional Use Permit to operate a marijuana retail facility under MSB 17.60 on the above referenced property. It has been determined that the following information needs to be provided and/or clarified in order to process this request:

1. What are the proposed hours of operation for the marijuana retail facility?
2. The application material indicates you have a security plan in place. Will all employees be trained on all security measures?
3. Do you have any landscaping plans? If so, please elaborate.
4. What is your status with the State of Alaska Marijuana Control Board?

Once an application has been determined to be complete, staff will begin the public notice process. Should you have any questions or require additional information, please feel free to contact me at the above mailing address, phone: 861-7862, or email: joseph.metzger@matsugov.us. Thank you for your time and consideration on this matter.

Respectfully,

Joe Metzger
MSB Planner II
907-861-7862
Joseph Metzger

From: Joseph Metzger
Sent: Monday, February 3, 2020 7:47 AM
To: ‘Chad Ragsdale’
Subject: RE: RFAI MCC Flight 1-31-20

Received, thank you Chad.

Respectfully,

Joe Metzger
MSB Planner II
907-861-7862

From: Chad Ragsdale <tokawear@outlook.com>
Sent: Saturday, February 1, 2020 9:02 AM
To: Joseph Metzger <Joseph.Metzger@matsugov.us>
Subject: RE: RFAI MCC Flight 1-31-20

[EXTERNAL EMAIL - CAUTION: Do not open unexpected attachments or links.]

Chad Ragsdale
dba MCC Flight
2490 S. Paddock Drive Wasilla, Alaska 99654

SUBJECT: Conditional Use Permit Application – Request for Required Information LOCATION: 5675 E. Blue Lupine Drive (Tax ID: 1807B01L011)

Dear Mr. Ragsdale,

Borough staff has reviewed the application material and the site plan(s) submitted on November 27, 2019 and additional application information submitted on January 17, 2020 for a Conditional Use Permit to operate a marijuana retail facility under MSB 17.60 on the above referenced property. It has been determined that the following information needs to be provided and/or clarified in order to process this request:

1. What are the proposed hours of operation for the marijuana retail facility? - The planning commission seems comfortable with 8am-12pm, 7 days a week. MCC Flight’s operating hours would work well within those parameters. We would likely not be open those hours per se, but the flexibility as a business to react to changing customer patterns would be agreeable.

2. The application material indicates you have a security plan in place. Will all employees be trained on all security measures? If so, please elaborate. - Yes during training the employees receive training about security measures and the correct responses in the event of a security threat.

3. What is your status with the State of Alaska Marijuana Control Board? – The license was approved with Delegation on 1/24/20 by the AMCO MCB.

Thanks,
Chad
Hey Chad,

Please see the attached letter requesting additional information on your CUP request. As always, if you have any questions or need clarification on anything, don’t hesitate to contact me.

Respectfully,

Joe Metzger
MSB Planner II
907-861-7862
This map is solely for informational purposes only. The Borough makes no express or implied warranties with respect to the correctness, function, or usefulness of the map or the reliability of the map for any particular purpose beyond those originally intended by the Borough. For information regarding the full disclaimer and policies related to acceptable uses of this map, please contact the Makawonok-Belleve Borough GIS Division at 907-861-7801.
This map is solely for informational purposes only. The Borough makes no express or implied warranties with respect to the character, function, or capabilities of the map or the suitability of the map for any particular purpose beyond those originally intended by the Borough. For information regarding the full disclaimer and policies related to acceptable uses of this map, please contact the Muncaster-Sellers Borough GIS Division at 907-861-7801.

Legend

- □ 1000' Use Area Buffer
- □ Subject Parcel
- □ Roads
- □ Parcels

Legend:

- □ 1000' Use Area Buffer
- □ Subject Parcel
- □ Roads
- □ Parcels

Date: 10/23/2019

Legend:

C = Commercial
V = Vacant
R = Residential

1 inch = 400 feet
State of Alaska
Department of Transportation and Public Facilities

Driveway Permit #29614

This permit allows the owner to construct and maintain a driveway within a State owned highway Right of Way.

Contact Name: Chad Ragsdale
Phone Number: (360) 991-4631

Owner: Chad Ragsdale
Mailing Address: 240 S Podcock Dr, Wasilla, AK 99623

Driveway Location: Wasilla DW- 5675 E Blue Lupine Dr.-Twinook Subdivision, Block 1, Lot 11, Plat 79-450, Parcel ID: 19746

Driveway width 25 Feet
Left edge clearance 500 Feet
Right edge clearance 75 Feet
Left return radius 40 Feet
Right return radius 40 Feet
Shoulder width 10 Feet
Approach angle 90 Degrees
Landing grade +/- 2 Percent
Landing length 35 Feet
Road surface type Paved
Shoulder type Paved
Landing surface type Asphalt
Left driveway fore slope 3:1
Right driveway fore slope 3:1
Ditch depth 3 Feet
Culvert Type Corrugated metal pipe
Culvert Size 18 Inches
Culvert Length 42 Feet

Design Criteria

This permit applies only to the Department of Transportation & Public Facilities (DOT&PF) State right of way.

Any survey monument or monument accessory that will be disturbed or destroyed during construction of the driveway must be referenced prior to the disturbance and restored or replaced by a Land Surveyor licensed in the State of Alaska. The Land Surveyor must file a Monument Record in accordance with AS 34.65.040. All monument records must be reviewed by DOT&PF prior to filing with the District Recorder.

Placement of fill material in waters of the U.S., including wetlands and streams, requires prior authorization from the U.S. Army Corps of Engineers. It is the responsibility of the owner to contact the Corps before filling activities take place. www.poa.usace.army.mil/perm

A driveway constructed under permit within a highway right-of-way is the property of the State, constructed under permit within a highway right-of-way is the property of the State, but all cost
Permit No. 29614

and liability arising from the construction, operation, or maintenance of a driveway is at the sole expense of those lands served.

DOT&PF is not obligated to change its maintenance practices to accommodate a driveway constructed under a permit, or to incur any additional expense removing snow berms or other obstructions from a driveway within a right of way resulting from DOT&PF’s activities, or activities under a permit issued under 17 AAC 15.

Permittee is responsible for adjusting or relocating the driveway without cost or liability to DOT&PF if the use or safety of the highway requires that the driveway be adjusted or relocated.

This permit is not a property right but a temporary authorization, revocable by the State upon violation of any permit terms or conditions, or for other reasons. All reasonable attorney’s fees and costs associated with legal or enforcement actions related to the terms and conditions of this permit will be borne by the Permittee.

A Permittee shall construct and maintain a driveway in such a manner that the highway, and all of the highway’s appurtenances or facilities, including drainage facilities, pipes, culverts, ditches, traffic control devices, street lights, pathways, and sidewalks are not impaired or endangered in any way by the construction or maintenance. (17 AAC 10.20(b)) If the Permittee damages any improvements within the State right of way, the Permittee will be responsible for returning them to their previous condition. DOT&PF inspection and approval of the restored improvements is required. (17 AAC 10.065)

Permittee shall indemnify, defend, and hold harmless the State, and its officers, employees, and contractors, from any and all claims or actions resulting from injury, death, loss, or damage sustained by any person or personal property resulting directly or indirectly from Permittee's use of or activities in the permitted area.

If driveway construction or maintenance interferes with the public's safety and/or use of facilities within State owned right of way, you will be directed to stop work until adjustments are made.

If a culvert is required by this driveway permit, culvert ends must be installed at the time of construction and maintained continuously by the Permittee. Please contact DOT&PF for information about acceptable driveway markers (i.e., size, materials, distance, etc.) for placement within the right of way.

Permittee may not push or otherwise deposit upon any street, avenue, alley, sidewalk, or other public right of way any snow or ice which has been removed from a private driveway, private parking area, or the adjacent property. (13 AAC 02.530)

Permittee is responsible for sight distance clearing of brush and obstructions within the right of way adjacent to their property.

While doing construction or maintenance activities do not park equipment or stockpile material on the shoulder during non-working hours.
Permit No. 29614

The Permittee will be responsible for all necessary Federal, State, and Municipal permits and licenses required by law, pay all taxes and special assessments lawfully imposed upon the permitted area, and pay other fees and charges assessed under applicable law.

This permit grants permission for construction only, allowing access to and from Permittee’s property onto a State maintained highway. It does not permit the following within the right of way or within that portion of a driveway that is within the right of way: (1) Parking of vehicles "for sale"; (2) Obstructions of any kind (i.e. logs, cables, fencing, etc.); (3) Advertising signs or banners/flags; (4) Parking vehicles with signs/advertising on the side.

Attachments included as part of this permit are:

- Site Plan

I, Chad Ragsdale, acknowledge and accept that we will comply with all the provisions and conditions that the Department of Transportation and Public Facilities has included as a condition of issuing this permit.

Chad Ragsdale Signature

Date 8-29-19

DOT&PF Signature

Date
Permit No. 29614

Site Plan: project Asbuilt 53989
LICENSE NUMBER 23122

License Number: 23122
License Status: Delegated
License Type: Retail Marijuana Store
Doing Business As: MCC Flight
Business License Number: 2092384
Issue Date:
Effective Date:
Expiration Date:
Email Address: tokawear@outlook.com
Physical Address: 5675 E Blue Lupine Dr
Wasilla, AK 99654
UNITED STATES

Licensees: Alaskan Pipe Dreams, LLC 10113559
Entity Officials: Chad Ragsdale
Dara Ragsdale

Onsite Consumption Endorsement

Status:
Approval Date:
Issue Date:
Effective Date:
September 20, 2019

Chad Ragsdale
MCC Flight
2490 S. Paddock Dr.
Wasilla, AK 99654

SUBJECT: MCC Flight - New
FIRE SERVICE AREA: Central Mat-Su FSA
PLAN REVIEW: 2020-044
TYPE OF CONSTRUCTION: VB
OCCUPANCY TYPE: B

2012 INTERNATIONAL BUILDING AND FIRE CODE

Dear Mr. Ragsdale:

Plans for the subject facility have been reviewed by this office for conformity with the State Fire Safety Regulations and are hereby approved as submitted. Enclosed is a certificate of approval that must be posted on the premises until completion of the above facility. Any changes to the approved plans must be submitted to this office for review and approval. **You are prohibited to occupy this building until construction is completed for which plans have been examined and approved.**

It must be understood that the inclusion of and compliance with State Fire Safety Regulations does not preclude the necessity of compliance with the requirements of local codes and ordinances. Also understand that approval of submitted plans is not approval of omissions or oversights by this office or noncompliance with any applicable regulations. The plans have not been reviewed for compliance with the Federal Americans with Disabilities Act or structural requirements.

If we can be of further assistance in this matter, please contact us at the address above.

Sincerely,

Donald C. Cuthbert
Fire Marshal
Plan Review #2020-044
MCC Flight

This is to certify that the plans for this building were reviewed by CMSFD’s Fire & Life Safety Division on 9/20/2019, for conformance with AS 18.70.010-100; 13 AAC 50.027. This certificate becomes invalid 180 days after the work on the site is commenced, within 180 days after issuance, or if the work authorized is suspended or abandoned for a period of 180 days after the time work is commenced. An extension may be requested at the above mentioned address.

This certificate shall be posted in a conspicuous place on the premises listed above and shall remain posted until construction is completed. Notice: Any changes or modifications to the approved plans must be resubmitted for review by the Central Mat-Su Fire Department.

Authority: AS 18.70.080, 13 AAC 50.075 & MSB RS 06-024

by Donald C. Cutbert, Fire Marshal
Permit Center – Fee Receipt Form

Property Location:

<table>
<thead>
<tr>
<th>USE PERMITS (100.000.000.341.300)</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 8.35 Public Display of Fireworks</td>
<td>$25.00</td>
</tr>
<tr>
<td>□ 8.40.010 Liquor License - Alcohol & Marijuana Control Office (AMCO) Referrals for Matanuska Susitna Borough Review of Issuance, renewal or transfer (location, owner)</td>
<td>$100.00</td>
</tr>
<tr>
<td>□ 8.41.010 Marijuana License - Alcohol & Marijuana Control Office (AMCO) Referrals for Matanuska Susitna Borough Review of Issuance</td>
<td>$100.00</td>
</tr>
<tr>
<td>□ 8.52 Temporary Noise Permit</td>
<td>$500.00</td>
</tr>
<tr>
<td>□ 8.55 Special Events Permit Matanuska Susitna Borough Payment Date Wednesday, December 4, 2</td>
<td></td>
</tr>
<tr>
<td>500 – 1000 Attendees</td>
<td>$500.00</td>
</tr>
<tr>
<td>1000+ Attendees</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>□ 8.55 Special Events Permit Site</td>
<td>$300.00</td>
</tr>
<tr>
<td>17.02 Mandatory Land Use Permit Deposit Number 39719</td>
<td></td>
</tr>
<tr>
<td>Operator Lach0415</td>
<td>$150.00</td>
</tr>
<tr>
<td>17.04 Nancy Lake Special Land Use</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.06 Electrical Generating & Delivery Tax Map # 2MISC</td>
<td></td>
</tr>
<tr>
<td>17.08 Hay Flats Special Land Use</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.17 Denali State Park Condition Receipt Number MSB91364140</td>
<td></td>
</tr>
<tr>
<td>17.18 Chickaloon Special Land Use Paid By RAYSDALE CHAD/CASH</td>
<td></td>
</tr>
<tr>
<td>17.19 Glacier View Special Land Use Cashier Id. LACH0415</td>
<td></td>
</tr>
<tr>
<td>17.23 Port MacKenzie Development</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.25 Talkeetna Conditional Use Receipt Number MSB91364140</td>
<td></td>
</tr>
<tr>
<td>17.27 Sutton Special Land Use Paid By RAYSDALE CHAD/CASH</td>
<td></td>
</tr>
<tr>
<td>17.28.030 Interim Materials District Total Paid $1,000.00</td>
<td></td>
</tr>
<tr>
<td>17.29 Flood Damage Prevention Cash $1,000.00</td>
<td></td>
</tr>
<tr>
<td>17.29 Flood Damage Prevention Change $0.00</td>
<td></td>
</tr>
<tr>
<td>17.30.040 Earth Materials Extracted</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.30.050 Earth Materials Extracted</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.36 Residential Planned Unit Development Application – Concept Plan – up to 50 Lots Additional Lots or tracts being created – Per Lot</td>
<td>$500.00</td>
</tr>
<tr>
<td>17.48 Mobile Home Park Permit Application</td>
<td>$500.00</td>
</tr>
<tr>
<td>17.52 Conditional Land Use District App (Rezone)</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.52 Conditional Use Permit Application</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>17.55 Shoreline Setback Exception Application</td>
<td>$300.00</td>
</tr>
<tr>
<td>17.60 Conditional Use Permit Application</td>
<td>$1,000.00</td>
</tr>
</tbody>
</table>

Revised: 3/29/2019
PUBLIC HEARING

LEGISLATIVE

Resolution No. PC 20-12

MSB 17.68
Outdoor Shooting Facility Standards

(Page 85 - 336)

PUBLIC HEARING
SUBJECT: AN ORDINANCE OF THE MATANUSKA-SUSITNA BOROUGH ASSEMBLY ADOPTING MSB 17.68 OUTDOOR SHOOTING FACILITIES IN ORDER TO ESTABLISH STANDARDS FOR COMMERCIAL, EDUCATIONAL, AND NONPROFIT OUTDOOR SHOOTING FACILITIES.

AGENDA OF: February 18, 2020

ASSEMBLY ACTION:

MANAGER RECOMMENDATION: Refer to Planning Commission.

APPROVED ~ JOHN MOOSEY, BOROUGH MANAGER:

<table>
<thead>
<tr>
<th>Route To:</th>
<th>Department/Individual</th>
<th>Initials</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originator - A. Strawn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning and Land Use Director</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borough Attorney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borough Clerk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATTACHMENT(S): Fiscal Note: YES ___ NO ___ X
Planning Commission Resolution PC 20- (___pp)
Excerpt from National Rifle Association Range Source Book (2012) (1 page)
Occupation Safety and Health Administration Noise Exposure Standard 1910.95 (13 pp)
Ordinance Serial No. 20-25 (12 pp)

SUMMARY STATEMENT:
In September 2019 the Matanuska-Susitna Borough Assembly adopted Resolution 19-083, directing the Planning Department to “develop a conditional use permit process for commercial, educational, and nonprofit outdoor shooting facilities to be reviewed by the Planning Commission and adopted by the Assembly.”

Page 1 of 5
In November 2019 staff released a draft of an ordinance that set basic standards and a conditional use permit process for outdoor shooting facilities. Staff received approximately 250 comments regarding the draft ordinance. While most of the comments consisted of blanket opposition to any ordinance regulating shooting, many of the comments contained valuable information and suggested edits.

In development of this ordinance staff was very cognizant of state restrictions on municipalities’ ability to regulate firearms. Accordingly, some modifications were made to ensure that the ordinance does not violate state law. In pertinent part, AS 29.35.145 provides for regulation of firearms and knives as follows:

(a) The authority to regulate firearms and knives is reserved to the state, and, except as specifically provided by statute, a municipality may not enact or enforce an ordinance regulating the possession, ownership, sale, transfer, use, carrying, transportation, licensing, taxation, or registration of firearms or knives.

There are several provisions within Alaska Statute specifically granting municipalities the power to regulate this type of facility. AS 29.35.145(b) is one such provision:

(b) Municipalities may enact and enforce ordinances

(1) that are identical to state law and that have the same penalty as provided for by state law;

(2) restricting the discharge of firearms in any portion of their respective jurisdictions where there is a reasonable likelihood that people, domestic animals, or property will be jeopardized; ordinances enacted or enforced under this paragraph may not abridge the right of the individual guaranteed by art. I, sec. 19, Constitution of the State of Alaska, to bear arms in defense of self or others;

After careful evaluation of this law and how it pertains to the original draft ordinance, staff decided to remove the proposed regulations from MSB 17.60: Conditional Uses because it contains general standards that go beyond restrictions which pose a likelihood of jeopardy to people, domestic animals, or property. Particularly problematic are standards such as MSB 17.60.100(A)(1) which reads:

(1) the conditional use will preserve or not detract
Another specific power granted to municipalities within state law includes the power to regulate noise associated with shooting ranges under AS 34.75.030 which provides:

AS 34.75.030 State and municipal regulation

(a) Notwithstanding AS 02.15.020 and AS 02.25.020, the state or a municipality may not regulate the outdoor level of noise at a facility if the facility is exempt from a criminal or civil action under AS 34.75.010(a).

(b) Except as otherwise provided in this chapter, a municipality may regulate the noise level produced by a facility.

Finally, AS 29.35.210(b)(4) specifically gives second class authority to provide for water pollution control on an areawide basis. Alaska Statutes also mandate municipalities provide for Land Use Regulations under AS 29.35.180 Land Use Regulation.

With state law in mind, all of the standards within the ordinance address inherent issues associated with outdoor shooting facilities that the borough has specifically been given the authority to regulate. Specifically, the ordinance addresses lead contamination, stray bullets, and harmful levels of noise.

Lead contamination - According to Environmental Protection Agency (EPA) Manual on Best Management Practices for Lead at Outdoor Shooting Ranges (Rev. 2005), lead from improperly managed shooting ranges can be dissolved or carried by stormwater, can migrate through soil, and can be carried long distances in solution by groundwater. Exposure to very low concentrations of lead can have dangerous effects to infants and children. The ordinance addresses lead contamination by requiring new ranges to submit and follow a lead stewardship plan in accordance with EPA Best Management Practices.

Stray Bullets - Stray bullets are an obvious safety concern for outdoor shooting facilities if they are not designed to capture stray bullets. This ordinance ensures that ranges are designed to capture stray bullets and prevent unwanted ricochet.

Harmful levels of noise - According to Rutgers University Noise Technical Assistance Center, excessive noise can cause an assortment of impacts on human health including physiological impacts such as elevated blood pressure, faster heart rates,
increased neuroendocrine hormone levels. Noise can also affect the quantity and quality of sleep. The threshold of 90 dB(a) was chosen because any exposure beyond 90 dB(a) for greater than eight hours in a workplace would exceed Occupational Safety and Health Administration (OSHA) standards for the workplace. Additionally, the NRA Range Source Book (2012) lists exceedance of 90 dB(a) for 1 hour out of 24 as “unacceptable.”

A major change from the original draft ordinance is the permit type has been changed from a conditional use permit to an administrative permit. Administrative permits do not require as much judgment in the decision to grant or deny the permit. They are decided by the Planning & Land Use Director instead of the Planning Commission and typically do not require judgement on highly subjective standards such as whether or not a development meets the “character and integrity” of a surrounding area.

Finally, a common criticism of the original draft ordinance was that it was not clear what types of shooting ranges the ordinance applied to. The language has not been modified from the original draft because staff believes that the language is clear and does not need modification. A couple of examples mentioned were: a person teaching a group of boy scouts how to fire weapons on private property; and a gunsmith sighting in or testing, on a private range, firearms that he repaired. Neither of these examples are intended to be regulated under this chapter. MSB 17.68.030(D) provides:

(D) This chapter does not regulate the discharge of firearms on private property where the property is not open to the public on a commercial, education, nonprofit, or membership basis.

In both of these scenarios the range is not open to the public and is therefore not regulated under this chapter.

Comprehensive Plan

This ordinance implements several goals and policies of the Comprehensive Plan.

Goal (LU-1): Protect and enhance the public safety, health, and welfare of Borough residents.

Goal (LU-4): Protect and enhance the Borough's natural resources including watersheds, groundwater supplies and air quality.

Policy LU4-1: Identify, monitor, protect, and enhance the quantity and quality of the Borough's watersheds, groundwater aquifers, and clean air resources.
Goal (CQ-1): Protect natural systems and features from the potentially negative impacts of human activities, including, but not limited to, land development.

Policy CQ1-2: Manage activities affecting air, vegetation, water, and the land to maintain or improve environmental quality, to preserve fish and wildlife habitat, to prevent degradation or loss of natural features and functions, and to minimize risks to life and property.

Goal (CQ-2): Manage the natural and built environments to achieve minimal loss of the functions and values of all drainage basins; and, where possible, enhance and restore functions, values, and features. Retain lakes, ponds, wetlands, streams, and rivers and their corridors substantially in their natural condition.

Policy CQ2-2: Comprehensively manage activities that may adversely impact surface and ground water quality or quantity.

Goal (LU-2): Protect residential neighborhoods and associated property values.

Policy LU2-1: Develop and implement regulations that protect residential development by separating incompatible uses, while encouraging uses that support such residential uses including office, commercial and other mixed-use developments that are shown to have positive cumulative impacts to the neighborhood.

Goal (LU-3): Encourage commercial and industrial development that is compatible with residential development and local community desires.

Policy LU3-1: Develop and implement regulations that provide for non-residential development.

RECOMMENDATION OF ADMINISTRATION:
Staff respectfully recommends the Assembly consider adoption of this ordinance.
Best Management Practices for Lead at Outdoor Shooting Ranges
For additional copies of this manual, please contact:

United States Environmental Protection Agency
Division of Enforcement and Compliance Assistance
RCRA Compliance Branch
290 Broadway, 22nd Fl.
New York, New York 10007-1866

Tel: 212-637-4145
Fax: 212-637-4949

Copies of this manual along with any additions or updates can also be obtained on-line at:
http://www.epa.gov/region2/waste/leadshot

Copying and Reprinting

This document is in the public domain and may be freely copied or reprinted.

Fourth Printing, June 2005
Best Management Practices for Lead at Outdoor Shooting Ranges

Notice

This manual is intended to provide useful general information to shooting range owners/operators. The United States Environmental Protection Agency (EPA) does not certify or approve ranges, range design or lead management practices. While every effort has been made to provide up-to-date technical information, this manual is not to be used as a substitute for consultation with scientists, engineers, attorneys, and other appropriate professionals who should be called upon to make specific recommendations for individual range design and lead management.

Any variation between applicable regulations and the summaries contained in this guidance document are unintentional, and, in the case of such variations, the requirements of the regulations govern.

This guidance was developed by EPA Region 2 in cooperation with a few states as well as many EPA offices. In addition, EPA, with the assistance of the Association of State and Territorial Solid Waste Management Officials (ASTSWMO) provided all 50 states with an opportunity to review the RCRA regulatory portion of the guidance. At the time of printing, about 40 states had contacted the EPA and given their support and concurrence. EPA is continuing to get the agreement of the remaining states. Therefore, it appears that most, if not all, states will share the same view as to how lead shot is regulated.

Following the steps set forth in this guidance should result in compliance with applicable regulations. EPA does not make any guarantee or assume any liability with respect to the use of any information or recommendations contained in this document.

This guidance does not constitute rulemaking by the EPA and may not be relied on to create a substantive or procedural right or benefit enforceable, at law or in equity, by any person.
Acknowledgements

The USEPA would like to acknowledge the support of:

- The National Rifle Association of America
- The National Shooting Sports Foundation
- The Wildlife Management Institute
- Mark Begley of the Massachusetts Department of Environmental Protection
- Mr. Dick Peddicord of Dick Peddicord and Company, Inc.

These participants provided valuable information and assistance as peer reviewers in the development of the manual and their efforts are truly appreciated. EPA also wishes to give special thanks to Dr. Charles W. Sever of Okie Environmental Consulting, L.L.C., Inc., Mr. Mike Warminsky of Brice Environmental Services Corp., and Mr. Victor Ordija of Sporting Goods Properties. The EPA also wishes to acknowledge and thank the many others who provided important comments and insight, and especially those individuals who took the time to meet with us in person or on the phone.

Cover photo by: Mr. Jack Hoyt, EPA Region 2
Statement of Goals

The goals of this manual are:

• to inform shooting ranges:
 • that the United States Environmental Protection Agency’s (EPA) purpose in developing and distributing this manual is to assist range owners and operators to operate in an environmentally protective manner.

• to promote an understanding of:
 • why lead is an environmental, public and regulatory concern,
 • what laws and regulations apply,
 • the benefits of applying good management practices,
 • what can be done to successfully manage lead,
 • why implementing lead best management practices is an integral part of environmental stewardship,
 • how to minimize litigation risk.

• to promote action by ranges to:
 • adopt and implement best management practices for managing lead,
 • recycle a finite natural resource,
 • become a model for other ranges through proper lead management,
 • advocate environmental stewardship.
MEMORANDUM

FROM: Elizabeth A. CostBume, Director
Office of Solid Waste

TO: RCRA Senior Policy Advisors

The purpose of this memo is to transmit a Region 2 document entitled "Best Management Practices for Lead at Outdoor Shooting Ranges," EPA-902-B-01-001, January 2001. This report is a technical information manual to assist range owners and operators in managing lead at shooting ranges. The report covers the environmental concerns, applicable laws and regulations, and current best management practices. This document was developed collaboratively with a number of stakeholders and is considered by my office to be the national guidance on this subject.

Background

Lead at some shooting ranges can be a significant environmental concern depending on location (e.g., proximity to wetlands) and hydrogeologic setting, as evidenced by a number of cases where lead pellets and shot have been taken in by fish and fowl at ranges over wetlands, and at some ranges where streams in acid lead-leaching environments have picked up lead contamination. Recognizing these problems, Region 2 in collaboration with EPA HQ, States, shooting range associations, and other shooting range experts, developed the enclosed technical guidance to identify the problems and solutions for preventing and controlling these problems. We commend this guidance to you as an information source for your use in working with range owners and operators to identify and address these concerns at specific ranges. Copies of this manual have been sent to all 50 States, with the help of ASTSWMO, and at least 40 States have responded with concurrence and support for this guidance.

Also enclosed for your information is a list of references “Summary of Shooting Range Lead Management Guidance” prepared by various shooting range-interested associations, and a copy of an NPDES permit for the Naperville, IL Sportsman’s Park shooting range.
If you have any questions regarding lead at shooting ranges, please contact George Meyer (Chief, RCRA Compliance Branch, Region 2) at 212-637-4144, Meyer.George@epa.gov, or Ken Shuster in the Office of Solid Waste at 703-308-8759, shuster.kenneth@epa.gov.

It is my hope that wide distribution of these documents will help encourage greater cooperation and coordination on shooting range issues among RCRA, Superfund, and Water staff in the regions and states. To this end, it would be helpful if you would send the name of a point of contact in your region to Ken Shuster and George Meyer.

For additional copies of the Region 2 guidance, please contact George Meyer. It is also available at www.epa.gov/region2/waste/leadshot.

Enclosures

cc: George Meyer, Region 2
 Elaine Davies, OERR
 Michael Cook, OW
 Eric Schaeffer, ORE, OECA
 Craig Hooks, FFEQ, OECA
 Bob Byrne, Wildlife Management Institute
 Barbara Simcoe, ASTSWMO
 Regional Superfund Division Directors w/o Region 2 enclosure
 Regional Water Division Directors w/o Region 2 enclosure
 Regional RCRA Enforcement Section Chiefs w/o Region 2 enclosure
Best Management Practices for Lead at Outdoor Shooting Ranges

Table of Contents

Page

List of Figures .. ii
List of Tables ... ii
Introduction ... iii

Chapter I - Environmental and Regulatory Concerns at the Shooting Range I-1
1.0 Background .. I-1
1.1 Lead Contamination's Impact on Human Health and the Environment I-2
1.2 Legal Requirements & Court Rulings ... I-6
1.3 Benefits of Minimizing Lead's Environmental Impact ... I-12

Chapter II - Range Characteristics & Activities to Consider When Implementing BMPs II-1
2.0 Background ... II-1
2.1 Physical Characteristics .. II-1
2.2 Operational Aspects .. II-4
2.3 Planning a New Range ... II-4

Chapter III - BMPs for Outdoor Ranges ... III-1
3.0 Background ... III-1
3.1 Bullet and Shot Containment Techniques (Step 1) .. III-1
3.2 BMPs to Prevent Lead Migration (Step 2) ... III-5
3.3 Lead Removal and Recycling (Step 3) ... III-11
3.4 Documenting Activities and Record Keeping (Step 4) ... III-17
3.5 Additional Economic Considerations ... III-18
3.6 Summary of Key BMPs for Shooting Ranges ... III-18
3.7 Certificate of Recognition ... III-18

References

Appendix A - Resources
Appendix B - Lead Shot Alternatives
Appendix C - Sample Bullet Containment Devices
Appendix D - RCRA Regulatory Requirements and Interpretations
Appendix E - Template for an Environmental Stewardship Plan for Management of Lead Shot/Bullets
BMP for Lead at Outdoor Shooting Ranges

List of Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Effects on the Human Body from Excessive Exposure to Lead</td>
<td>I-5</td>
</tr>
<tr>
<td>2-1</td>
<td>pH Scale</td>
<td>II-1</td>
</tr>
<tr>
<td>3-1</td>
<td>Four Steps to Build a Successful Lead Management Program Utilizing a Variety of BMPs</td>
<td>III-1</td>
</tr>
<tr>
<td>3-2</td>
<td>Sample Filter Bed System</td>
<td>III-10</td>
</tr>
<tr>
<td>3-3</td>
<td>Examples of Common Lead Reclamation Equipment</td>
<td>III-11</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Application of Key Terms to Outdoor Ranges</td>
<td>I-10</td>
</tr>
<tr>
<td>2-1</td>
<td>Common Physical Characteristics at Ranges - Potential Risks and Benefits Associated with Range Operations</td>
<td>II-3</td>
</tr>
<tr>
<td>3-1</td>
<td>Summary of Key BMPs</td>
<td>III-19</td>
</tr>
<tr>
<td>3-2</td>
<td>Calculating Weight of Lime to Increase Soil pH Values</td>
<td>III-6</td>
</tr>
</tbody>
</table>
Introduction

This manual provides owners and operators of outdoor rifle, pistol, trap, skeet and sporting clay ranges with information on lead management at their ranges. This manual serves as a reference guide and presents best management practices (BMPs) available to the shooting range community. The practices have been proven to effectively reduce or eliminate lead contamination and may also be economically beneficial to the range owner/operator. Since each range is unique in both the type of shooting activity and its environmental setting, specific solutions are not provided in this manual. Rather, a range owner or operator may use this manual to identify and select the most appropriate BMP(s) for their facility. Other information on environmental aspects of management at outdoor shooting ranges can be found in the National Shooting Sports Foundation’s Environmental Aspects of Construction and Management of Outdoor Shooting Ranges.

The manual does not address range layout or design to meet range safety or competition requirements. For information on range safety and competition requirements, range owners/operators are directed to other comprehensive reference materials available on that subject, such as the National Rifle Association’s Range Source Book, and the National Association of Shooting Range’s website (www.rangeinfo.org).

Owners/operators of ranges may want to assign the use of this BMP Manual to a specific team or committee. Delegating this responsibility to a specific team or group helps to assure that the BMP’s are identified and implemented.

The manual is organized as follows:

- Chapter I provides the background on why lead is of concern to human health and the environment. It includes a discussion of how environmental laws impact shooting ranges and the importance of an integrated BMP program to manage lead.

- Chapter II discusses physical and operational characteristics to be considered when selecting a successful BMP program.

- Chapter III addresses best management techniques for rifle/pistol ranges, skeet and trap ranges, and sporting clay ranges. In this chapter, the manual explores possible solutions to prevent, reduce and/or remove lead contamination for each type of range.

- The Appendices provide current (as of June 2005) contacts for lead reclamation and recycling companies, vendors that provide prevention and/or remediation techniques and shooting organizations that have additional information on the lead issue. Additionally, the Appendices provide information on alternatives to lead, diagrams of bullet trap designs, summaries of regulatory requirements and interpretations, and a sample Environmental Stewardship Plan.

EPA is very interested in any suggestions you have about practices included in this manual which have proven effective in controlling lead contamination or recycling lead bullets/shot. Please send such information to the address below. Also, for additional information, or to be added to the list of lead reclaimers or remediation contractors, contact the National Rifle Association (NRA), the National Shooting Sports Foundation (NSSF) or:

Lead Shot Coordinator
RCRA Compliance Branch
U.S. Environmental Protection Agency
Region 2
290 Broadway
New York, New York 10007-1866
Telephone: (212)637-4145
E-Mail: Leadshot.Region2@epa.gov
This page intentionally left blank
Chapter I: Environmental and Regulatory Concerns at the Shooting Range

1.0 Background

Outdoor shooting ranges provide recreational facilities for millions of shooting sports enthusiasts in the United States. Recently, there has been a growing public concern about the potential negative environmental and health effects of range operations. In particular, the public is concerned about potential risks associated with the historical and continued use of lead shot and bullets at outdoor ranges.

This concern is not unfounded. An estimated 9,000 non-military outdoor ranges exist in the United States, collectively shooting millions of pounds of lead annually. Some ranges have operated for as long as several generations. Historical operations at ranges involved leaving expended lead bullets and shot uncollected on ranges. Many of these ranges continue to operate in the same manner as in the past.

It is estimated that approximately four percent (4%) (80,000 tons/year) of all the lead produced in the United States in the late 1990’s (about 2 million tons/year), is made into bullets and shot. Taking into account rounds used off-range, and rounds used at indoor ranges, it is clear that much of this 160,000,000 pounds of lead shot/bullets finds its way into the environment at ranges.

Since the mid-1980’s, citizen groups have brought several lawsuits against range owners and have urged federal and state agencies to take action against owners and operators of outdoor shooting ranges. The citizen groups argued that range owners improperly managed discharged lead bullets and shot. Federal courts have supported parts of these suits, requiring range owners/operators to clean up lead-contaminated areas. Concurrent with the increased citizen suit activity, the federal EPA, the Centers for Disease Control and Prevention (CDCP), and a large number of states have identified human exposure to all forms of lead as a major health concern in the United States.

Lead management practices at ranges across the United States remain inconsistent. Some range owners/operators have examined the impact of range operations on human health and the environment and have implemented procedures to manage and/or remove accumulated lead from ranges. Other range owners/operators are just beginning to characterize and investigate their ranges in order to design an environmental risk prevention and/or remediation program(s) specific to their sites. A third group of ranges has adopted a “wait and see” policy – taking no action until specifically required to do so by law or clear guidance is in place. Finally, a fourth, small, but important group of range owners/operators remain unaware of lead’s potential to harm human health and the environment, and of existing federal and state laws.

To manage lead, many owners and operators have successfully implemented Best Management Practices (BMPs) at their ranges. These range owners and operators have realized many benefits from sound lead management including:

- stewardship of the environment, natural resources and wildlife,
- improved community relations,
- improved aesthetics of the range/good business practices,
- increased profitability through recovery/recycling lead, a valuable and finite resource, and
- reduced public scrutiny.

Shooting sports organizations [e.g., National Rifle Association (NRA) and the National Shooting Sports Foundation (NSSF)] promote lead management throughout the United States. These organizations have researched different methods to effectively address potential and actual lead mobility and exposure without detracting from the enjoyment of the sport. The NRA, NSSF, and a number of other shooting sports organizations strongly encourage range...
owners/operators to develop a BMP program that contains elements discussed later in this manual. Contact the NRA and NSSF for additional guidance materials available on lead management practices.

By implementing appropriate lead management at outdoor shooting ranges, range owners and operators can reduce the environmental and health risks associated with lead deposition, meet legal requirements and realize quantifiable benefits.

1.1 Lead Contamination’s Impact on Human Health and the Environment

Exposure Routes

Historically, the three major sources for human exposure to lead are lead-based paint, lead in dust and soil and lead in drinking water. Typically, human exposure occurs through ingestion, which is the consumption of lead or lead-contaminated materials, or by inhalation. The main human exposure to lead associated with shooting ranges is through lead-contaminated soil. However, other pathways are discussed below, along with lead’s detrimental effects on humans and animals.

Lead can be introduced into the environment at shooting ranges in one or more of the following ways. Each of these pathways is site-specific and may or may not occur at each individual range:

- Lead oxidizes when exposed to air and dissolves when exposed to acidic water or soil.
- Lead bullets, bullet particles, or dissolved lead can be moved by storm water runoff.
- Dissolved lead can migrate through soils to groundwater.

When lead is exposed to acidic water and/or soil, it breaks down by weathering into lead oxides, carbonates, and other soluble compounds. With each rainfall, these compounds may be dissolved, and the lead may move in solution in the storm runoff waters. Decreases in water acidity (i.e., increases in its pH) will cause dissolved lead to precipitate out of solution. Lead concentrations in solution are reduced by this precipitation. At pHs above 7.5, very little lead remains in solution. Increased time of contact between lead and acidic water generally results in an increase in the amount of dissolved lead in the storm runoff water. The five factors which most influence the dissolving of lead in water are summarized below:

Annual Precipitation Rate - The higher the annual precipitation rate, the faster the lead weathers. Also, during prolonged rains, the contact time between water and lead is increased. In general, the higher the precipitation rate, the higher the potential risk of lead migration off-site in solution.

pH of Rain and Surface Water - The acidity of the rainwater decreases as basic (alkaline) minerals in the soil are dissolved. If sufficient minerals such as calcium, magnesium, and iron are present in local soils, then the lead may quickly precipitate out of solution entirely as these other minerals are dissolved. The pH of shallow surface water is an indicator of the presence or absence of basic minerals in the local soil and in gravel within the stream beds through which the water has moved. The water in deeper streams and lakes is more likely to be composed of acidic rainwater that is not neutralized.

Contact Time - The contact time between acidic surface water and lead is a factor in the amount of lead that is dissolved. For example, lead shot deposited directly into a lake has a longer contact time then lead shot deposited in upland areas.

Soil Cover - Organic material will absorb lead and remove it from a water solution. The thicker the organic leaf and peat cover on the soil, the lower the lead content in solution in water leaving the shot area. Organic material has a strong
ability to extract lead out of solution in water.

pH of Groundwater - During periods of no rainfall, the water flowing within most streams comes from groundwater discharging into the stream channel. Therefore, the acidity of the groundwater affects the acidity of the surface water, and hence, affects the solubility of any lead particles carried into the stream during storm runoff.

Lead bullets, bullet particles or dissolved lead can be moved by storm water runoff

The ability of water to transport lead is influenced by two factors: velocity of the water and weight or size of the lead fragment. Water’s capacity to carry small particles is proportional to the square of the water’s velocity. Clear water moving at a velocity of 100 feet per minute can carry a lead particle 10,000 times heavier than water moving at a velocity of 10 feet per minute. Muddy water can carry even larger particles. The five factors that most influence velocity of runoff are described below:

Rainfall Intensity - The greater the volume of rainfall during a short period of time, the faster the velocity created to carry the rainfall off-site. The higher the annual rainfall, the greater the number of periods of heavy rainfall.

Topographic Slope - Generally, the steeper the topographic slope, the faster the velocity of stormwater runoff.

Soil Type - More rainfall will soak into sandy soils than into clay soils. Hence, for a given rainfall intensity, the volume of runoff will be greater from areas underlain by clays or other low permeable soils than from permeable sandy soil.

Velocity - Velocity tends to decrease as stream width increases. Merging streams, eddy currents, and curves in streams are other factors that may reduce the velocity. Generally, the shorter the distance from the lead deposit to the property line, the more likely it is that the lead fragments in suspension will be transported off-site.

Vegetative Cover and Man-made Structures - Structures such as dams and dikes reduce the water’s velocity and greatly reduce the size and weight of the lead particles the water can carry. Since lead particles are heavy compared to the other suspended particles of similar size, they are more likely to be deposited under the influence of anything that reduces velocity of the storm runoff. Grass and other vegetation reduce runoff velocity and act as a filter to remove suspended solids from the water.

Dissolved lead can migrate through soils to groundwater

Acidic rainwater may dissolve weathered lead compounds. A portion of the lead may be transported in solution in groundwater beneath land surfaces. Groundwater may transport lead in solution from the higher topographic areas to the lower areas such as valleys, where it is discharged and becomes part of the surface water flow. If the water flowing underground passes through rocks containing calcium, magnesium, iron, or other minerals more soluble then lead, or through minerals that raise the pH of the water, then the lead in solution may be replaced (removed) from the solution by these other metals. However, if the soil is a clean silica sand and gravel, fractured granite, or similar type material, then the lead may move long distances in solution. The factors most likely to affect the amount of lead carried by the groundwater in solution are discussed below:

Annual Precipitation - Generally, high precipitation rates result in heavy dew, more frequent rainfall, numerous streams, shallow depth to groundwater, shorter distance of travel, and more rapid rates of groundwater flow. Also, the greater volumes of rainfall over geologic time probably have reduced the amount of calcium and other soluble basic minerals that could raise the water pH and cause lead to precipitate (settle) out of solution from the groundwater.

Soil Types - Clays have a high ionic lead bonding capacity and more surface area to which the lead can bond. Also, groundwater movement in clay is very slow, which increases the contact time for lead to bond to the clay.
Low permeability reduces the amount of historical leaching and increases the probability of the presence of basic (pH-increasing) minerals that can precipitate out of solution in groundwater or cause the lead to bond to the clay. All of the basic calcium and related minerals generally will have been removed from the clean silica sand and gravel soils, so the lead in solution in groundwater in these type soils can move long distances (miles) through the ground relatively unchanged.

Soil Chemistry - The more basic minerals like calcium and magnesium that are present in soils along the pathways through which the groundwater moves, the greater the lead precipitation (removal) rate. Lead should move in solution only a short distance (a few feet) through a sand composed of calcium shell fragments, but could move in solution long distances (miles) through clean quartz sand.

Depth to Groundwater - In areas of groundwater discharge such as river flood plains and most flat areas, the groundwater surface is often a few feet below the surface. Remember, the shorter the distance traveled, the greater the risk that the lead will migrate into the environment. Shallow depth to groundwater is indicative of higher risk for lead to reach the water.

pH of Groundwater - Although other factors influence solubility of lead in water, a good rule of thumb is that lead will precipitate out of solution when the pH or alkalinity of water is greater then about 7.5. But, lead dissolved in acid groundwater may travel many miles without change.

Health Effects of Lead Exposure on Ranges

Lead poisoning is a serious health risk. At higher concentrations, it is dangerous to people of all ages, leading to convulsions, coma and even death. At even very low concentrations, it is dangerous to infants and young children, damaging the developing brain and resulting in both learning and behavioral problems. Figure 1-1 describes the effects of exposure to lead on children and adults.

Federal, state and local actions, including bans on lead in gasoline, paint, solder and many other lead-containing products, have resulted in significant reductions in average blood-lead levels. Despite these advances, the number of lead-poisoned children remains alarmingly high. Children living in older homes may be exposed to lead in peeling paint or paint dust. Children can also come in contact with lead in soil and with lead dust carried home on the clothing of parents.

On ranges, inhalation is one pathway for lead exposure since shooters are exposed to lead dust during the firing of their guns. Because wind is unlikely to move heavy lead particles very far, airborne dust is generally considered a potential threat only when there are significant structures that block air flow on the firing line. Under such conditions, the hygiene and other practices proposed by the NRA for indoor shooting ranges in their "Source Book" are applicable to outdoor ranges.

Range workers may also be exposed to lead dust while performing routine maintenance operations, such as raking or cleaning out bullet traps. Owners/operators may want to protect these workers by requiring them to wear the proper protective equipment or dampening the soil prior to work.

Another exposure route for lead at outdoor ranges is ingestion by direct contact with lead or lead particles. For example, lead particles generated by the discharge of a firearm can collect on the hands of a shooter. These particles can be ingested if a shooter eats or smokes prior to washing his/her hands after shooting. The relative risk of lead exposure to people in a well managed facility is low.

Detrimental effects due to elevated lead levels can also be found in animals. Excessive exposure to lead, primarily from ingestion, can cause increased mortality rates in cattle, sheep and waterfowl. For example, waterfowl and other birds can ingest the shot, mistaking it for food or grit. Waterfowl, in particular, are highly susceptible to lead ingestion. This is a concern at ranges where shooting occurs into or over
Effects on the Human Body from Excessive Exposure to Lead

If not detected early, children with relatively low levels of lead (as low as 10 microgram/deciliter for children) in their bodies can suffer from:

- damage to the brain and nervous system,
- behavior and learning problems (such as hyperactivity and aggressiveness),
- slowed growth,
- hearing problems,
- headaches, and
- impairment of vision and motor skills.

Adults can suffer from:

- difficulties during pregnancy,
- reproductive problems in both men and women (such as low birth weight, birth defects and decreased fertility),
- high blood pressure,
- digestive problems,
- neurological disorders,
- memory and concentration problems,
- muscle and joint pain, and
- kidney dysfunction.

Figure 1-1: Effects on the Human Body from Excessive Exposure to Lead
water. Many of the legal and government actions that have been brought against ranges are based on elevated levels of lead and increased mortality in waterfowl. For example, in one case, an upland area of a range became a temporary pond after a thunderstorm. Waterfowl used the pond to feed and shortly thereafter, there was a waterfowl die-off (increase in bird mortality), apparently from lead ingestion.

1.2 Legal Requirements & Court Rulings

To date, most litigation concerns have been at shotgun ranges where the shotfall zone impacts water or wetland areas. The potential environmental and human health risks are greater at these ranges. However, all ranges, including those not located near water bodies, may be subject to legal and government action if proper range management programs are not implemented. Range owners/operators should expect greater scrutiny as ranges become more visible to regulators, environmental groups and the general public.

Citizen groups have been the driving force behind most legal actions taken against outdoor ranges. These groups have sued range owners/operators under federal environmental laws. Two of EPA's most comprehensive environmental laws, the Resource Conservation and Recovery Act (RCRA) and the Clean Water Act (CWA), specifically provide citizens with the right to sue in cases in which the environment and human health are threatened. These citizen suits have been highly effective in changing the way ranges operate, even when out-of-court settlements have been reached. The decisions of the United States Court of Appeals for the Second Circuit in Connecticut Coastal Fishermen's Association v. Remington Arms Company, et al.

In the late 1980s, the Connecticut Coastal Fishermen's Association filed a lawsuit against Remington Arms Company as the owner of the Lordship Gun Club. The Lordship Gun Club (a.k.a. Remington Gun Club) is a 30-acre site in Stratford, Connecticut, located on the Long Island Sound at the mouth of the Housatonic River. In the mid-1960s, the Lordship Gun Club was reconstructed to its final configuration of 12 combined trap and skeet fields and one additional trap field. Over the years, the Lordship Gun Club became known as one of the premier shooting facilities on the East Coast.

The Connecticut Coastal Fishermen's Association filed a lawsuit, alleging that lead shot and clay targets are hazardous waste under RCRA. The Complaint alleged that because the lead shot and clay targets were hazardous wastes, the gun club was a hazardous waste storage and disposal facility subject to RCRA requirements. The plaintiff also sought civil penalties and attorney's fees.

Remington moved for a summary judgment dismissing the complaint, and the Connecticut Coastal Fishermen's Association cross-moved for a partial summary judgment on the issue of liability. On September 11, 1991, the United States Court of Appeals for the Second Circuit set a legal precedent in the application of RCRA and/or the CWA to outdoor ranges. Lead management programs at outdoor ranges must comply with both laws. Actions have also been taken under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) commonly know as Superfund. State and local statutes and regulations may also apply. To ensure environmental laws are being followed, range owners/operators must understand the legal issues and requirements.

1.2.1 Resource Conservation and Recovery Act (RCRA)

RCRA provides the framework for the nation's solid and hazardous waste management program. Under RCRA, EPA developed a "cradle-to-grave" system to ensure the protection of human health and the environment when generating, transporting, storing, treating and disposing of hazardous waste. RCRA potentially applies to many phases of range operation because lead bullets/shot, if abandoned, may be a solid and/or a hazardous waste and may present an actual or potential imminent and substantial endangerment.
States District Court for the District of Connecticut ruled on the case.

Regarding the plaintiff's claims under RCRA, the District Court ruled in favor of the Connecticut Coastal Fishermen's Association, holding that the lead shot and clay targets were "discarded materials" and were "solid waste;" therefore, the materials were subject to regulation under RCRA. The court further stated that the discharged lead shot was a "hazardous waste," but declined to rule on whether the clay target fragments were also hazardous waste.

Remington petitioned the United States Court of Appeals for the Second Circuit Court to review the lower court's ruling.

On June 11, 1992, both parties presented oral arguments before the court. Subsequent to oral arguments, the appellate court requested that EPA file an amicus brief "addressing whether lead shot and clay target debris deposited on land and in the water in the normal course of trap and skeet shooting is 'discarded material'... so as to constitute 'solid waste' under RCRA."

On March 29, 1993, the United States Court of Appeals for the Second Circuit reached its decision. With respect to RCRA, the court both reversed and affirmed the lower court's opinion in part.

Briefly, the decision affects currently operating and future gun clubs, and the following key points are of primary concern:

1. With respect to RCRA, the court agreed with EPA's amicus brief, which had argued that shooting at gun clubs is not subject to regulatory (as opposed to statutory) requirements. In other words, during routine operations, gun clubs are not viewed as facilities that manage hazardous wastes subject to RCRA regulations and, as such, do not require RCRA permits.

2. Another argument in the EPA's amicus brief with which the court agreed was the view that the RCRA statute allows citizen suits to be brought if a gun club's shooting activities pose an "imminent and substantial endangerment to health or the environment." Although gun clubs are not subject to RCRA regulations, EPA or any state, municipality, or citizen group can take legal action under the statutory provisions of RCRA against gun clubs for actual or potential environmental damage occurring during, or even after, the operation of the club. Under RCRA, the plaintiff would be eligible to recover its legal fees as well.

3. The court concluded that lead shot and clay targets meet the statutory definition of solid waste because these materials were "discarded (i.e. abandoned)" and "left to accumulate long after they have served their intended purpose." Further, the court concluded that based upon toxicity testing and evidence of lead contamination, the lead shot was a hazardous waste subject to RCRA.

The important point to consider here is that if lead shot and clay target debris are discarded (i.e. abandoned), these materials are considered a solid waste as defined in the statute and the facility may be subject to governmental or citizen suits.

If, on the other hand, the discharged lead shot is recovered or reclaimed on a regular basis, no statutory solid waste (or hazardous waste) would be present and imminent hazard suits would be avoided.

Thus, the Remington Arms case is an important legal precedent. Even though regulations have not been issued regarding gun club operations and environmental protection, gun clubs are still at risk of legal action under RCRA if they fail to routinely recover and reclaim lead, do not take steps to minimize lead release or migration, or if they abandon lead in berms.

Gun clubs where there is shooting into water, wetlands, rivers, creeks, and other sensitive environments have the highest degree of litigation risk. Conversely, gun clubs that have the lowest risk of environmental litigation or government action are those clubs that do not shoot into water or wetlands and which have an active program to recover lead.

The following describes how RCRA may apply to outdoor shooting ranges.
How is Lead Shot Regulated Under RCRA?

Lead shot is not considered a hazardous waste subject to RCRA at the time it is discharged from a firearm because it is used for its intended purpose. As such, shooting lead shot (or bullets) is not regulated or is a RCRA permit required to operate a shooting range. However, spent lead shot (or bullets), left in the environment, is subject to the broader definition of solid waste written by Congress and used in sections 7002 and 7003 of the RCRA statute.

With reference to reclaiming and recycling lead shot, the following points should serve as guidance in understanding RCRA and how it applies to your range. (A more detailed discussion of the underlying RCRA rules applicable to lead shot removal at ranges is included in Appendix D)

- Removal contractors or reclaimers should apply standard best management practices, mentioned in this manual, to separate the lead from soil. The soil, if then placed back on the range, is exempt from RCRA. However, if the soil is to be removed off-site, then it would require testing to determine if it is a RCRA hazardous waste.

- Lead, if recycled or reused, is considered a scrap metal and is, therefore, excluded from RCRA.

- Collected lead shot and bullets are excluded from RCRA regulation, and need not have a manifest, nor does a range need to obtain a RCRA generator number (i.e., the range is not a hazardous waste “generator”), provided that the lead is recycled or re-used. The reclaimer does not need to be a RCRA transporter. However, it is recommended that ranges retain records of shipments of lead to the receiving facilities in order to demonstrate that the lead was recycled. Records should also be kept whenever the lead is reused (as in reloading.) The range should be aware that it ultimately may be responsible for the lead sent for reclamation. Therefore, only reputable reclaimers should be utilized.

- Lead from ranges destined for recycling may be temporarily stored on range property after separation from soil if the lead is stored in closed, sealed containers, the containers are stored in a secure location and routinely inspected by range staff, and records of inspections are maintained.

- Sections 7002 and 7003 of the RCRA statute allow EPA, states or citizens to use civil lawsuits, to compel cleanup of or other action for “solid waste” (e.g., spent lead shot) posing actual or potential imminent and substantial endangerment. Such actions can be sought whether the range is in operation or closed, and is based solely on a determination that harm is being posed or may be posed by the range to public health and/or the environment. Since the risk of lead migrating increases with time, making ranges that have not removed lead more likely candidates for government action or citizen lawsuits under RCRA Section 7002 and 7003, ranges are advised to maintain a schedule of regular lead removal.

- With time, lead in soil can become less desirable to reclaimers and smelters, thereby potentially reducing or eliminating financial returns from lead removal. Moreover, such soil may be subject to more expensive treatment to separate the lead for recycling.

- Lead removal will allow the range to: avoid contamination of the site and potential impacts to human health and the environment; reduce liability with regard to potential government agency or citizen suit action; and, possibly, benefit economically from the recycling of lead. Additional guidance on reclaiming lead is provided in other parts of this manual.

- Soil from berms and shotfall zones may be moved to another area of the range for such reasons as addressing potential environmental impacts (e.g., runoff), altering the layout to address safety concerns or allowing different types of shooting activities, or adding or removing shooting positions. However, removal of lead prior to such
movement of soil is normal practice and highly advised because it extends the usable life of the materials and reduces the possibility of release of lead into the environment. If lead is not first removed, it will be further dispersed and will be more difficult to remove in future reclamation. Written records of all such activity should be maintained indefinitely, as they will be necessary in subsequent construction or range closure.

- This RCRA summary applies to operating and non-operating ranges, and the use of BMPs at operating ranges is highly recommended. However, because of increased risk if lead is not actively managed, such application may not preclude the need for remediation, as appropriate and/or as required by states’ regulations, when a range is permanently closed, on-site lead is abandoned, or the land use changes. Introductory guidance for remediation can be found at www.epa.gov/epaoswer/osw or www.epa.gov/superfund. Look under the sections “Cleanup” or “Resources,” or use the Search function.

1.2.2 - Clean Water Act

The goal of the Clean Water Act (CWA) is to “restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.” The most common allegation against ranges by the EPA and citizen groups, is that they violate the CWA if they do not have permits that allow spent ammunition to be discharged into water. The CWA prohibits “the discharge of any pollutant by any person” into the waters of the United States without a National Pollution Discharge and Elimination System (NPDES) permit. There have been two court cases that have applied the provisions of the CWA to civilian shooting ranges. To understand how the CWA can apply to shooting ranges, a summary of the cases follows. Also see Table 1-1.

To understand the application of the CWA to outdoor ranges, one must know the definitions of key terms and how they have been applied to shooting activities. See Table 1-1.

In the Remington Arms and the New York Athletic Club lawsuits, citizen groups argued that the defendants violated the CWA by discharging pollutants from point sources into the Long Island Sound without a NPDES permit. Application of the CWA requires the violations to be ongoing. Consequently, the court in Remington Arms dismissed the CWA charge against the range because it had ceased operating before the lawsuit was filed.

However, in the New York Athletic Club case, the club was still in operation during the time of litigation, but had switched to steel shot. EPA’s opinion on this case also addressed the CWA violation. EPA argued that certain trap/skeet ranges can convey pollutants, via point sources, to water in violation of the CWA if a NPDES permit is not obtained. Although some shooting organizations have disagreed with the EPA position, the United States District Court for the Southern District of New York specifically found that:

- The mechanized target throwers, the concrete shooting platforms, and the shooting range itself are considered point sources as defined by the CWA;

- Expended shot and target debris, including non-toxic shot, such as steel shot, left in water, are pollutants as defined by the CWA.

Although the New York district court’s decision in the New York Athletic Club case is not controlling in any other district, range owners and operators of outdoor ranges that shoot over or into wetlands or other navigable waters of the United States should be aware of it. Based on the court’s decision in the New York Athletic Club case, any range whose shot, bullets or target debris enter the “waters of the United States” could be subject to permitting requirements as well as governmental or citizen suits. “Waters of the United States” or “navigable waters of the United States” are waters of the United States, including territorial seas that include any body of water that has any connection to, or impact on, interstate waters or commerce. The waters may include lakes,
Table 1-1: Application of Key Terms to Outdoor Ranges

<table>
<thead>
<tr>
<th>Key Term</th>
<th>Statutory Definition</th>
<th>Application to New York Athletic Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge of a Pollutant</td>
<td>"any addition of any pollutant to navigable waters from any point source" (emphasis added) 33 U.S.C. § 1362 (12)</td>
<td>Shooting into water (including wetlands) constitutes a discharge. In the New York Athletic Club, the range did not dispute that its shooting operations resulted in the deposition of spent shot and other debris into the waters of the United States.</td>
</tr>
<tr>
<td>Point Source</td>
<td>"any discernible, confined, and discrete conveyance... from which pollutants are or may be discharged" into the Nation's waters. 33 U.S.C. § 1362 (14)</td>
<td>In New York Athletic Club, the court found that shooting ranges act to systematically channel pollutants into regulated waters and that mechanized target throwers convey pollutants directly into water. Specifically, it stated, "A trap shooting range... is an identifiable source from which spent shot and target fragments are conveyed into navigable waters of the United States." The court also determined that the concrete shooting platforms can be seen as separate "point sources" under the CWA or as one facet of the shooting range that systematically delivers pollutants (e.g. shot and wadding) into the water.</td>
</tr>
<tr>
<td>Pollutant</td>
<td>"dredged spoil, solid waste,... munitions... discharged into water" 33 U.S.C. § 1362 (6)</td>
<td>In New York Athletic Club, shot and target residue constitute a form of "solid waste" subject to regulation under the CWA as a "pollutant." Based on these determinations, the court supported EPA's contention that the ranges were discharging pollutants from a point source without a permit, in violation of the CWA.</td>
</tr>
</tbody>
</table>
ponds, rivers, streams, wetlands, or even guts that are frequently dry, which may not be obvious to range owners/operators. These ranges may be required to remediate contaminated sediments and soils, which could be both difficult and expensive, and to cease operations over waters and wetlands. **It is essential that these ranges change the direction of shooting, to avoid shooting over or into wetlands or other navigable waters of the United States, and initiate lead removal and recycling activities, where feasible.**

In addition, these ranges can cause a substantial impact on wildlife and wetlands, which range owners/operators may be required to restore under other federal laws (e.g., CERCLA, discussed below). Lead shot entering a water body substantially increases the potential risk of contaminating surface and groundwater which, in turn, threatens human health and the environment. Finally, as New York Athletic Club, Remington Arms and similar cases show, neighbors have the most leverage when range activity affects wetlands and waterways.

For ranges located away from coastal areas or whose operating areas are situated wholly over land, compliance with the CWA can be achieved by obtaining a NPDES permit for piped or channeled runoff from the range into water.

Shooting ranges impacting wetland areas may be subject to other regulations found in Section 404 of the CWA. This section is the principal federal regulatory program protecting the Nation’s remaining wetland resources. Any plan by range owners/operators to dredge and/or fill wetlands may require a permit and will come under close scrutiny by federal, state and local governments and citizen groups. Owners and operators must comply with the CWA for range design, redesign, construction, reclamation or remediation occurring in wetland areas.

1.2.3 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), imposes liability on past and present owners or operators of properties where a release of a hazardous substance into the environment exists. CERCLA is used to ensure that an owner/operator cleans a contaminated site or to seek reimbursement from past owners/operators or disposers (potentially responsible parties or PRPs) when a party, either the government or private party, has cleaned up the contamination. Under CERCLA, lead is considered a hazardous substance.

EPA has the authority to order a PRP to clean up a site or conduct the cleanup and recover its costs from the PRP under CERCLA. Responsible parties may be held liable for all cleanup costs, which can be substantial. Under CERCLA, shooting ranges may be liable for government costs incurred during the cleanup of ranges, natural resources damages, and health assessments and/or health effects studies. The following two examples illustrate how shooting ranges (including one operated by the federal government) can be affected by CERCLA.

Southern Lakes Trap and Skeet Club Site, Lake Geneva, Wisconsin, et al.

In 1992, the US Fish and Wildlife Service (USFWS) began an investigation to determine the cause of death of over 200 Canada geese. The geese died as a result of acute lead poisoning after ingesting lead shot, which research indicated came from the Southern Lakes Trap and Skeet Club. The USFWS, in its role as Natural Resource Trustee, took action to recover the cost of damage to the natural resources (i.e., migratory geese) under CERCLA. In addition, EPA pursued a separate action under the Agency’s CERCLA response authority. The club had leased the property from the property owners to operate a shooting range. Shortly after EPA sent out the notice of potential liability to the current and former owners and

1 The term "land" in this instance refers specifically to terrain recognized as "non-wetland" areas.
operators of the club site, the club closed permanently.

In 1994, EPA issued an Administrative Order on Consent (AOC) against one current and one former owner of the property where the now closed Southern Lakes Trap and Skeet Club was located. The AOC required the owners to perform a site assessment, which included an evaluation of the costs to restore the wetlands. In 1998, EPA completed activities to clean up the site and restore some of the natural resources and wetlands. In a negotiated settlement, EPA recovered $1 million of the cost of the cleanup.

Walter L. Kamb v. United States Coast Guard, et al.

In another CERCLA action, Mr. Kamb (court appointed property guardian) sued the U.S. Coast Guard, California Highway Patrol, City of Fort Bragg, and the County of Mendocino (the defendants) for recovery of cleanup costs under CERCLA. Mr. Kamb had been appointed by the Mendocino County Superior Court to sell the property on behalf of the property owners. The property was formerly used by defendants as a rifle, pistol and trap range. Soil analysis indicated the presence of lead in the form of lead shot, bullets, pellets, and dust. The court found the defendants were "responsible parties" (liable for cleanup costs) under CERCLA. No apportionment of liability was made and the final determination of each parties' pro rata share of the response cost was deferred.

This case shows that range activity need not affect a water body to trigger CERCLA liability. CERCLA is a powerful statutory authority that can greatly impact current and former range owners/operators. The statute allows for recovery of damages to natural resources, the cost of any health assessment studies and all cleanup costs. Liability may extend to past owners and operators long after a range ceases operation.

1.2.4 Additional Laws and Regulations

Shooting ranges may also be subject to state and local laws and regulations. Many states have adopted their own environmental laws, which are based on federal laws. Specifically, these states have laws and regulations that mirror the CWA and RCRA program laws. EPA-approved state program laws must be as stringent as the federal laws and may be more stringent. Activities at shooting ranges may also be subject to local laws, ordinances and regulations addressing issues such as noise, zoning, traffic, wetlands and nuisance. Often, citizens or neighbors of outdoor shooting ranges can initiate noise nuisance claims against range owners/operators. Because many states have passed legislation protecting ranges from noise nuisance lawsuits, these may turn into claims of environmental violations under the laws discussed above due to the presence of lead and other products at ranges.

1.3 Benefits of Minimizing Lead's Environmental Impact

All ranges will benefit from proactively implementing successful BMPs. Even if range activities currently do not cause adverse public health and environmental impacts, by developing and promoting active lead management programs, ranges will benefit in the following ways:

- **Through a sound lead management program, shooting sports enthusiasts can reduce the potential of lead exposure and contamination to humans, animals and the environment.**
- **A lead management program will result in improved public relations for the range and the shooting sports.** Ranges can promote and publicize their successful BMP programs to improve their public image. Since many of the legal and governmental actions begin with or are due to citizen groups, an active lead management program may improve the public image of the range with these citizen groups.
- The removal of spent lead from the range presents a clean, well maintained facility, which will increase customer satisfaction.
• Lead is a recyclable and finite resource and can be recovered from the active portion of ranges and sold to lead reclaimers. Frequently, reclaimers do not charge range owners/operators to recover lead from ranges, and owners and operators may receive a percentage of the profit from the sale of reclaimed lead. This factor drives recycling efforts at many ranges.

• By reducing or eliminating a potential source of lead migration in soil, surface water and groundwater, range owners/operators may avoid costly and lengthy future remediation activities.

• Finally, implementing a BMP program for lead may eliminate or greatly reduce the risk of citizen lawsuits and the legal costs associated with these lawsuits. Through management and removal practices, lead may no longer represent a threat upon which citizen lawsuits are based.

Range owners/operators may question whether the benefits of a regular and timely BMP program outweigh the efforts of implementing and maintaining a program. The questions may arise especially for ranges at which shooting activities involve waterways, since national attention has focused on ranges located adjacent to water (e.g., Remington Arms and the New York Athletic Club). However, all outdoor ranges may be subject to legal actions under RCRA and CERCLA authority. All of the benefits for adopting best management practices are available and worthwhile for every range owner and operator.

The following sections provide information that will assist the range owner or operator in implementing a BMP program for recovery and recycling of lead shots and bullets.
This page intentionally left blank
Chapter II:
Range Characteristics & Activities to Consider When Implementing Best Management Practices (BMP)

2.0 Background

Since each firing range site is unique, BMPs for lead must be selected to meet site-specific conditions in order to achieve maximum success. A range's physical characteristics and the operational aspects (e.g., volume of shooting, shooting patterns and operating schedules) will effect which BMPs may apply and how they will be implemented. Accordingly, whether designing a new outdoor range or operating an existing range, it is important that BMPs incorporate techniques appropriate for the range's individual characteristics.

Section 2.1 of this chapter identifies the physical characteristics that must be considered when evaluating your range. A summary of common physical characteristics at ranges is also presented in Table 2-1. These factors include:

- Range Size (primarily for shotgun ranges)
- Soil Characteristics
- Topography/Runoff Direction
- Annual Precipitation
- Ground and Surface Water
- Vegetation
- Accessibility

Section 2.2 discusses the operational aspects that must be considered. These factors include:

- Lead Volume
- Size of Shot/Bullets
- Operating Schedule
- Shooting Direction and Pattern
- Range Life Expectancy

In addition, Section 2.3 discusses issues that are specific to implementing BMPs when planning a new range.

2.1 Physical Characteristics

Physical characteristics of ranges, relative to lead management issues, are discussed below.

Range Size

Shotgun range design and type affects the ease of lead shot collection. Larger ranges typically tend to have lead shot that is dispersed over a wider area, while smaller ranges tend to concentrate lead shot in a smaller area. Reducing the area of the shotfall zone will concentrate the shot within a smaller area, allowing for easier cleanup and reclamation. BMP techniques for reducing the shotfall zone at trap and skeet ranges, as well as sporting clay ranges, are discussed in Chapter III.

Soil Characteristics

Spent lead bullets and shot are most often deposited directly on and into soil during shooting. When lead is exposed to air and water, it may oxidize and form one of several compounds. The specific compounds created, and their rate of migration, are greatly influenced by soil characteristics, such as pH and soil types. Knowing the soil characteristics of an existing range site is a key component to developing an effective lead management plan.

Soil pH

Soil acidity is measured as pH on a scale (illustrated as Figure 2-1) between 1 (most acidic) and 14 (most alkaline, or basic), where 7 is termed neutral. Ideal soil pH for shooting ranges is 6.5 to 8.5.¹

Figure 2-1 – pH scale

Lead reacts more readily and may become more mobile under acidic (pH < 6) or higher alkaline (pH > 8) conditions. This means that spent lead shot left in or on such soils may eventually break down and contaminate underlying soil. In moderately alkaline soils (pH 7 - 8.5), the lead precipitates out of solution and binds to the soil. This “binding” effect prevents the lead from migrating to the subsurface. In general, soils in the eastern part of the United States tend to be acidic, whereas western soils tend to be more alkaline.

Soil Physical Characteristics

The migration rate of specific lead compounds is affected by the physical characteristics of soil. For example, dense soils, consisting of heavy clays, will prevent the lead compound from moving quickly through the subsurface. Any “free” lead ions become attached to clay particles, with this bond helping to prevent migration. However, with denser soils, the amount of surface runoff increases.

Although clay soils inhibit migration, lead reclamation by contemporary removal machinery tends to be more difficult in clayey conditions. Clayey soils tend to clog the screens and “bind” with shot and bullets. This situation may require additional traditional screening, or perhaps screening using water to enhance separation.

In contrast, sandy soils or gravel may not impede migration because the open pores of these soils allow lead compounds to percolate quickly. Fortunately, lead reclamation activities are more easily conducted in sandy soils. With this in mind, ranges located in sandy soils should remove lead more frequently.

Annual Precipitation

One of the most important factors that influences lead degradation (i.e., chemical reactions) and migration is precipitation. Water, most often in the form of rain, provides the means by which lead is transported. In general, ranges located in areas with high annual/seasonal rainfall2 have a higher risk of lead migration than those located in arid regions. This is especially true of outdoor ranges using “Steel Bullet Traps.”

Steel bullet traps build up a layer of lead residue; these particles are extremely small and more easily transported by rain/water. Also, the smaller the particle, the quicker it will degrade. A bullet trap needs to have a means to collect contact water, or be covered to prevent water from reaching it, and to minimize releases and degradation.

Topography/Runoff Directions

The topography of your range impacts both the ease of lead reclamation and the mobility of the lead. For example, lead reclamation is more successful at ranges where the shotfall zone is relatively flat, since many lead reclamation companies use heavy machinery that cannot operate on slopes or steep hills.

Another important characteristic is the direction in which your range topography slopes. During and after periods of rain, stormwater runoff may wash lead particles or lead compounds off the range. If there are surface water bodies such as lakes, rivers, or wetlands downgradient, the potential for lead to adversely affect the surrounding environment is even greater. Therefore, it is important to identify and control the direction of surface water runoff at your range. BMPs for modifying and controlling runoff are described in detail in Chapter III.

Groundwater

Groundwater depth should be considered when developing a lead management plan since the closer the groundwater is to the surface, the greater the potential for dissolved lead to reach it.

Vegetation

Vegetative ground covers can impact the mobility of lead and lead compounds. Vegetation absorbs rainwater, thereby reducing

2 Heavy annual rainfall is anything in excess of the average annual rainfall, which for the northeast United States (e.g. New York, New Jersey) is between 40 and 45 inches.
Table 2-1 – Common Physical Characteristics at Ranges – Potential Risks and Benefits Associated with Range Operations

<table>
<thead>
<tr>
<th>Physical Characteristics</th>
<th>Potential Risk to Environment</th>
<th>Potential Benefits in Preventing/Managing Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay, acidic soils</td>
<td>Acidic soils contribute to lead dissolution – increasing the potential for lead contamination – may increase run-off Difficult to reclaim lead via sifting/raking</td>
<td>May impede percolation of water through contaminated soil Binds "free" lead ions May benefit growth of vegetative covers</td>
</tr>
<tr>
<td>Sandy, alkaline soils</td>
<td>Contaminated rainwater can easily percolate through soil and groundwater Extremely alkaline soil will not support vegetation</td>
<td>Alkaline soils may inhibit lead dissolution Easier to reclaim lead via sifting/raking</td>
</tr>
<tr>
<td>Sandy, acidic soils</td>
<td>Acidic soils contribute to lead dissolution – increasing the potential for lead contamination Contaminated rainwater percolates quickly through sandy soils</td>
<td>Easier to reclaim lead via sifting/raking</td>
</tr>
<tr>
<td>Steep Rolling Terrain</td>
<td>May promote off-site drainage or drainage to on-site surface water bodies Can impede reclamation of expended shot via raking</td>
<td>None</td>
</tr>
<tr>
<td>Flat Terrain</td>
<td>Rainwater may "pond" in areas, promoting lead dissolution and contamination</td>
<td>Expended shot easily recovered Off-site drainage minimized</td>
</tr>
<tr>
<td>Wooded areas</td>
<td>May impede lead reclamation activities making equipment difficult to maneuver May provide habitat for wildlife - increasing exposure to lead</td>
<td>None</td>
</tr>
<tr>
<td>On-site or contiguous surface water bodies</td>
<td>VERY high potential for contamination when shot fall zone is located over or adjacent to water, increased wildlife exposure, increased lead dissolution. This is NOT an option for successful range location and may be more likely subject to litigation and/or governmental action if lead is deposited into water bodies</td>
<td>None</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Lead may be absorbed into grasses, other wildlife food sources</td>
<td>Ground covers slow down surface water run-on and run-off Some vegetation can extract lead ions from the soils</td>
</tr>
</tbody>
</table>
the time that the lead is in contact with water. Vegetation also slows down surface water runoff, preventing the lead from migrating off-site. However, excessively wooded areas (such as those often used for sporting clay ranges) inhibit lead reclamation by making the soils inaccessible to some large, lead-removal machinery. Understanding the type, concentration and variety of vegetation on your range is necessary for developing your lead management program and implementing BMPs at your range.

Accessibility

Accessibility to shotfall zones and backstops is extremely important for lead reclamation activities. A range that is not accessible to reclamation equipment will have difficulty implementing lead reclamation practices.

2.2 Operational Aspects

Operating practices can have a great affect on the volume and dispersion of lead at your range.

Lead Volume

Keeping records of the number of rounds fired over time at your range is important. The number of rounds fired provides a realistic estimate of the quantity of lead available for reclamation. This information helps to determine when reclamation is necessary in order to prevent accumulation of excess amounts of lead, thereby decreasing the potential for the lead to migrate off-site.

Size of Shot/Bullets

Knowledge of the size shot/bullets used on your range may be helpful. Lead reclamation companies generally use physical screening techniques to separate lead shot and bullets from soil. These screens come in a variety of sizes. Knowing what size shot/bullets have been used at your range will allow the reclaimer to maximize the yield of lead shot/bullets at your range.

Shooting Direction and Patterns

Shooting directions and patterns are important to consider when determining the effectiveness of bullet containment devices. For example, many bullet traps are effective in containing bullets fired from specific directions. It is vital that you utilize bullet containment devices that match your range’s specific shooting patterns and manufacturers specifications. Understanding the shooting direction and patterns will also help to correctly identify the shotfall zone at trap and skeet ranges.

Shooting into Water Bodies

Shooting into water bodies or wetlands should not occur. Besides the environmental impacts discussed previously, the introduction of lead to surface water bodies will likely cause a range to be susceptible to litigation and/or governmental action. Shooting into water bodies or wetlands is NOT an option for ranges that want to survive in the future.

Range Life Expectancy and Closure

The life span of your range may be impacted by many factors, including financial and environmental issues, noise, and encroachment on residential areas. If your range is slated for closure, contact your local state or EPA representatives for guidance.

2.3 Planning a New Range

As discussed in the previous sections, site characteristics and operational aspects affect lead migration, degradation and reclamation activities at ranges. If you are planning on opening a new range, you should select and/or design a site in consideration of the factors discussed in this manual. This will allow you to minimize the potential of lead impacting your site or adjacent properties. A new range owner has the advantage of being able to design a successful lead management program in full consideration of the site characteristics and recommended BMPs. This advanced understanding of operational aspects
and requirements will allow you to minimize the potential for lead migration prior to opening.

The most important site selection criteria to consider when selecting a new range location include: topography; surface water flow patterns; and depth to groundwater. If possible, ranges should be developed on flat terrain, as it facilitates reclamation and reduces the chance of off-site migration due to surface water runoff as compared with highly sloped terrain. When considering a prospective location for a range, ask yourself: What is the direction of surface water runoff? Does the site drain to surface water (e.g., streams, rivers) on-site? Off-site? Can the range design be modified to minimize potential runoff? Is reclamation equipment accessible to the area to clean the range?

By selecting an appropriate location and designing a lead management program in consideration of site characteristics, new shooting ranges can be developed to minimize the potential for lead contamination. Other important site characteristics can be modified. For example, a new shotgun range can be designed to concentrate the shotfall area, vegetation can be added or altered, and the most advantageous shooting direction can be selected. These modifications are BMPs, and are discussed in further detail in Chapter III.
This page intentionally left blank
3.0 Background

To operate an outdoor range that is environmentally protective requires implementing an integrated lead management program, which incorporates a variety of appropriate BMPs. These BMPs create a four step approach to lead management:

- Step 1 - Control and contain lead bullets and bullet fragments
- Step 2 - Prevent migration of lead to the subsurface and surrounding surface water bodies
- Step 3 - Remove the lead from the range and recycle
- Step 4 - Documenting activities and keeping records

An effective lead management program requires implementing and evaluating BMPs from each of the four steps identified above and illustrated as Figure 3-1. The BMPs discussed in Sections 3.1 and 3.2 should not be considered alternatives to lead reclamation, but rather practices that should be followed between lead reclamation events.

It is important to note that the cost and complexity of these BMPs vary significantly. It is your range's individual characteristics that will determine which BMPs should be implemented. The specific BMPs are described more fully below.

3.1 Bullet and Shot Containment Techniques (Step 1)

3.1.1 Bullet Containment

Knowing where spent lead is allows the appropriate BMP to be used. The single most effective BMP for managing lead in these areas is by bullet containment. Owners/operators should employ a containment system that allows for the maximum containment of lead on-site. The containment systems mentioned in this section are for reference only. Each containment design for a range is site specific. Each owner/operator must look at the various factors in determining which containment system is best for his or her range. Some factors include: overhead, cost of installation, maintenance (e.g., creation of lead dust from steel containment systems). Range owner/operators should consult with various contractors to determine which containment system is best for their range.

![Figure 3-1 - 4 Steps to Build a Successful Lead Management Program Utilizing a Variety of BMPs](image-url)
This section discusses BMPs for controlling spent lead bullets and fragments in a "controlled" and well-defined area behind the target area. Containing bullets and bullet fragments is critical to successfully managing lead.

There are a variety of containment device options available that serve as BMPs to control lead. The principle behind all of them is trapping and containing the actual bullet. They include:

- Earthen Berms and Backstops
- Sand Traps
- Steel Traps
- Lamella or Rubber Granule Traps
- Shock Absorbing Concrete

For each type of trap, design variations have been developed to fit the specific needs of an individual range. Below are discussions of each general category of trap. Some bullet containment devices are so comprehensive that they virtually eliminate lead's contact with the environment.

However, it is important to discuss all types of bullet containment devices because they are part of comprehensive BMPs for managing lead at rifle and pistol ranges.

EPA does not endorse any bullet containment design as being "better" than another. Different containment designs attempt to eliminate lead's contact with the environment, however, additional BMPs may be required for lead management.

EPA recommends that you discuss your range's bullet containment needs with a variety of vendors before deciding what type of containment device to use. This manual does identify the possible advantages and disadvantages associated with each containment device in Table 3-1, at the back of this chapter.

Earthen Berms and Backstops

Perhaps the most common bullet containment system at rifle and pistol ranges is the earthen backstop (earthen material, i.e., sand, soil, etc., which is located directly behind the targets). The earthen backstop is generally between 15 and 20 feet high with a recommended slope as steep as possible. In many instances, backstops may be naturally occurring hillsides. When using an earthen berm or backstop, ensure that the uppermost layer (to a depth of one to two feet) exposed to the shooting activity is free of large rocks and other debris. These materials tend to increase ricochet and bullet fragmentation, which will, in turn, make lead reclamation activities more difficult, not to mention possible safety issues.

Removal of lead from earthen backstops may require lengthy reclamation (see Section 3.3) of the soil to remove the lead. Continued use of the backstop without removing the lead may result in increased ricochet of bullets and fragments. In addition, the backstop may lose its slope integrity because of "impact pockets" that develop. Once the lead has been removed from the earthen backstop, the soil can be placed back on the range and used again. Adding lime and phosphate during the rebuilding process is recommended as appropriate (see Section 3.2). However, other bullet containment techniques, including those listed below, should be considered prior to reestablishing an earthen backstop.

Sand Traps

A variation of the earthen backstop is the sand trap. Sand traps range from those that are simply mounds of sand or soil located directly behind the bullet targets, which serve as backstops to a sand trap that employs a system designed to contain, collect and control lead and contact water. This sand trap uses a grade of sand that is ballistically acceptable. Regular maintenance must be performed to remove larger particles (bullets) from the impact area. These traps are placed so that bullets fired across the range pass through the targets and become embedded in the sand. These traps are typically 15 to 20 feet high with a slope as steep as steep as possible.

steep as possible. The most important design criterion for these traps is that the uppermost layer (to a depth of 1 to 2 feet) be free of large rocks and other debris to reduce ricochet and bullet fragmentation, and to facilitate reclamation efforts. There may also be an impermeable layer (e.g., clay or liner) under the sand to prevent lead from contacting the soil underlaying the trap.

Sand traps come in various designs and levels of complexity. The sand trap may be ballistic grade sand contained in a high backstop, or a more complex “Pit and Plate” system. The Pit and Plate system uses an angled, steel deflection plate cover that helps to direct bullets and bullet fragments to the top layer of sand only. Some of the more sophisticated sand traps incorporate lead recovery devices. However, the Pit and Plate may increase the surface-to-mass ratio of the bullet splatter and, therefore, may increase environmental risk of lead migration.

Regardless of the type of sand trap that is used, the traps become saturated with bullets/bullet fragments. Once this happens, the sand must be sifted (see Section 3.3) to remove the bullets. The recovered bullets can then be sold to a lead recycler (this is discussed in more detail later in the chapter). After sifting, the sand can be returned to the trap. Continued use of the trap, without removing the lead, may result in an increased risk of ricocheting off the backstop and thus creating an increased safety hazard. Furthermore, the sand trap will become unstable over time. Sand traps may be located over an impermeable liner, to prevent lead from contacting soil underlying the trap. This will provide additional protection to soil and groundwater.

Steel Traps

Steel traps are located directly behind the targets so that expended bullets, along with bullet particles, are directed into some form of deceleration chamber. Once inside the chamber, the bullets decelerate until the bullets/bullet particles fall into collection trays at the bottom of the deceleration chamber. When the trap is full, or on a more frequent basis, the spent lead can easily be reclaimed for recycling.

With some steel traps, expended lead bullets may not come in direct contact with soils, thereby possibly minimizing lead’s contact with the environment. Consequently, the need for other BMPs (e.g., lime spreading, and/or engineering controls), such as those required at ranges with unlined earthen backstops or unlined sand traps, may be avoided if this trap design is selected for the range’s bullet containment device. In addition, bullet removal is somewhat easier than from a sand trap, and may only require emptying the bucket or tray containing the bullets and/or bullet fragments. However, an increase of lead dust and fragmented lead may be an additional environmental concern. Therefore, understanding the amount of lead dust and fragments is important to a successful lead management program. Also, some steel trap designs are not intended for shooting at different angles, therefore limiting the shooter to shooting straight on (no action shooting).

As with sand traps, steel traps vary in design and complexity. For example, the Escalator Trap has an upward sloping deflection plate that directs bullets into a spiral containment area at the top. The Vertical Swirl Trap is a modular, free standing trap with four steel plates that funnel the bullets into a vertical aperture in which they spin, decelerate, and become trapped in a bullet collection container. The Wet Passive Bullet Trap is equipped with steel deflection plates that slope both upward and downward. The upwardly sloped deflection plate is covered with an oil/water mixture to help reduce the occurrence of ricochet and bullet fragmentation. The bullet follows its own path in the round deceleration chamber for bullet recycling.

Lamella and Rubber Granule Traps

The Lamella Trap uses tightly-hanging, vertical strips of rubber with a steel backing to stop bullets. This trap is located directly behind the targets and, in many cases, the targets may actually be mounted to the trap. Lead removal
3.1.2 Shot Containment

Reducing the Shotfall Zone

Unlike rifle and pistol ranges, the area impacted by lead shot fired at trap, skeet and sporting clays ranges is spread out and remains primarily on the surface. Knowing where spent lead is allows the appropriate BMP to be used. The single most effective BMP for managing lead in these areas is reducing shotfall zones.

Concentrating the lead shot in a smaller area by modifying the shooting direction facilitates lead management by providing a smaller and more dense area of lead to both manage in-place and reclaim, thereby making the management and reclamation process simpler and more effective.

Sporting Clays Courses

Technologies have been developed to assist in reducing the range size of trap and skeet, and sporting clays facilities. The National Sporting Clays Association (NSCA) supports and promotes the Five-Stand Sporting Clays compact course design for shooting sporting clay targets, invented by Raymond Forman of Clay-Sport International, Cochrane, Alberta, Canada. The targets are directed over a smaller area than in English Style Sporting Clays (conventional sporting clays). It was originally designed to be overlaid on a conventional trap or skeet field and to be an alternative to earlier designs, which cover a much larger area. Another design, known as the National Rifle Association (NRA) Clays, is a portable target throwing unit which concentrates 15 rail-mounted machines on a two-story flatbed trailer. The NRA has also developed “compact sporting,” which is specifically for sporting clay facilities. This practice alters the angle that the target is thrown to concentrate the shotfall zone.

Skeet Fields

The typical single skeet field has a shotfall zone that is fan-shaped. For skeet fields with multiple stands side-by-side, the shotfall zones would overlap creating a shotfall zone that has a concentration of shot near the center of the fan.
Trap Fields

One way to reduce the shotfall zone at trap fields is to build the fields at an angle to one another. This will make the shape of the shooting dispersal pattern smaller and more concentrated. However, if you do decide to choose this option, be aware of safety issues when designing the overlapping shotfall zones.

For a range with only one trap field, one way to minimize the shotfall zone is to keep trap machines set in as few holes as possible (e.g., the number two or three hole setting). This reduces the area of lead concentration by limiting the angles for pigeon throwing, and therefore the area for lead shot fall. However, when two or more trap fields are positioned side by side, the shotfall zone will be continuous regardless of the "hole" setting.

Shot Curtains

Another method to consider for concentrating lead shot is the use of a shot curtain. This device is emerging as a potentially effective tool to keep lead shot out of selected areas of the range and, thereby, reduce the size of the shotfall zone and corresponding cost of reclamation. Different designs and material have been utilized in shot curtains and a number are in operation. The effectiveness of shot curtains is site specific and their long term viability and expense have yet to be fully determined.

3.2 BMPs to Prevent Lead Migration (Step 2)

This section discusses BMPs for preventing lead migration. These BMPs include:

- Monitoring and adjusting soil pH
- Immobilizing lead
- Controlling runoff

These BMPs are important for all outdoor ranges.

3.2.1 Monitoring and Adjusting Soil pH and Binding Lead

Lime Addition

The BMP for monitoring and adjusting soil pH is an important range program that can effect lead migration. Of particular concern are soils with low pH values (i.e., acidic conditions), because lead mobility increases in acidic conditions since the acid of the soils contributes to the lead break down. The ideal soil pH value for shooting ranges is between 6.5 and 8.5. This BMP is important because many soils in the eastern United States have pH values lower than 6.2.

To determine the pH of your soil, purchase a pH meter at a lawn and garden center. The pH meters are relatively inexpensive but valuable tools in the management of lead at your range. If the soil pH is determined to be below 6, the pH should be raised by spreading lime. It is recommended that the pH be checked annually.

One way to control lead migration is by spreading lime around the earthen backstops, sand traps, trap and skeet shotfall zones, sporting clays courses and any other areas where the bullets/shots or lead fragments/dust accumulate. For example, lead mobilized in rainwater from the lead that spatters in front of backstops after bullet impacts can be effectively controlled by extending a limestone sand layer out about 15 feet in front of the backstop. Likewise, spreading lime over the shotfall zone will help to raise the pH of the very top soil layer to a pH closer to ideal levels and reduce the migration potential of lead. This is an easy, low cost method. Spreading lime neutralizes the acidic soils, thus minimizing the potential for the lead to degrade. Lime can be easily spread by using a lawn fertilizer drop spreader available at any lawn and garden center.

Smaller forms of limestone (powdered, pelletized, and granular) are better suited.

because they dissolve and enter the soil more quickly than larger forms. However, the smaller forms of lime must be replenished more often. Conversely, limestone rock dissolves more slowly but does not need to be replenished as often. The larger rock form is better suited for drainage ditches, where it can decrease lead mobility by raising the pH of the storm water runoff.

Another way to control lead migration in earthen backstops is to break the capillarity within the base of the backstop. Most porosity in the soil material used in backstop is of capillary size, and, as a result, water is pulled upward into a capillary fringe within the base of the backstop. The height to which the water will rise in an earthen backstop depends on the soil material in the backstop. Water will rise more than 6 feet in clay, 3.3 feet in silt, 1.3 feet in fine sand, 5 inches in coarse sand, and only 2 inches in gravel.

Because of capillarity, the spent bullets may be in contact with acidic rainwater for a longer period of time, hence more lead is dissolved. Breaking the capillarity by adding a layer of limestone or gravel to the base of the backstop should reduce the rate of deterioration of spent bullets, the erosion of the backstop, and the amount of lead going into solution in the water in the backstop. Also, any lead dissolved should precipitate out of solution as the acids are neutralized and the pH raised from the water passing through and reacting with the limestone.

Lime spreading is an especially important method for implementing this BMP at sporting clays ranges where heavily wooded areas are less accessible to conventional lead removal equipment. These types of ranges also tend to have more detritus (e.g., leaves, twigs, etc.) on the ground, which can increase soil acidity as they decompose. In these areas, semiannual monitoring of the soil pH levels is suggested.

Spreading bags of 50 pounds (at ranges with sandy soils) or 100 pounds (at ranges with clayey soils) per 1,000 square feet of range will raise the pH approximately one pH unit for a period of between one and four years, respectively. The market price of lime in either the granular or pelletized form commonly ranges from approximately $2.00 to $4.00 per fifty pound bag.

Table 3-2 provides information for raising pH levels of clay soils in temperate climates (i.e., Mid-Atlantic/Northeast). Additional information on the amount of lime to apply may also be found on the bags of the purchased lime and/or from the local lawn and garden center. It should be noted that if the soil pH is below 4.5, the addition of lime may only raise the soil pH to approximately 5. In this situation, other BMPs should be used as well. If the soil pH is above the ideal range upper value (8.5), do not add lime. Adding lime to a soil of this pH could result in mobilization of the lead. Lime spreading may be done at anytime during the year, except when the ground is frozen.

Additionally, it is important to remember to monitor the soil pH annually, as the effectiveness of the lime decreases over time. Additional routine applications will be necessary throughout the life span of most ranges.

<table>
<thead>
<tr>
<th>Desired pH</th>
<th>4.0</th>
<th>4.3</th>
<th>4.5</th>
<th>4.8</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0-6.0</td>
<td>14</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.5-8.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>17</td>
<td>11</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>

* Lime requirements stated as pounds of lime/100 square foot of problem area for clay soils in temperate climates (i.e., Mid-Atlantic/Northeast US).
Phosphate Addition

In addition to lime spreading, another way to control lead migration is phosphate spreading. This method is recommended where lead is widely dispersed in range soils, a range is closing, or there is a high potential for vertical lead transport to groundwater (e.g., low soil pH, shallow water table). Under these circumstances, range soils may benefit from phosphate treatment. Unlike lime spreading, the main purpose of phosphate spreading is not to adjust soil pH but to bind the lead particles. This process also decreases the potential amount of lead that can migrate off-site or into the subsurface. Phosphate spreading can be done either separately or in conjunction with lime spreading. Generally, 15 to 20 pounds of phosphate per 1,000 square feet will effectively control the lead.

Phosphate spreading is especially recommended for sporting clays ranges and those parts of ranges not easily accessible by reclamation equipment. Phosphate spreading should be repeated frequently during the range’s lifetime. See pilot testing under “Other Ways to Bind Lead” below for proper frequency for replacing phosphate.

You can purchase phosphate either in its pure form, as phosphate rock, or as lawn fertilizer. The average lawn fertilizer costs approximately $7.00 per 40 pound bag. If you purchase lawn fertilizer, remember to check the bag for the actual percentage of phosphate. Most fertilizers contain 25% phosphate, so that if you purchase a 40 pound bag of fertilizer that contains 25% phosphate (i.e., 10 pounds of phosphate) you will need to spread 80 pounds of fertilizer per 1,000 square feet of the backstop. A typical fertilizer drop spreader can be used for distributing the phosphate. Like lime, phosphate should not be spread when the ground is frozen. In addition, it is not advised to use phosphate near water bodies since it contributes to algal blooms. Rock phosphate is a better choice if water is nearby.

Other Ways to Bind Lead

Although it may be possible to minimize lead’s mobility by spreading fertilizers that contain phosphate at impacted areas of the range, a more comprehensive procedure for immobilizing leachable lead in soils, by using pure phosphate in rock form or a ground phosphate rock [Triple Super Phosphate (TSP)], was developed and patented by the U.S. EPA/Ohio State University Research Foundation and RHEOX, Inc. This procedure used a three step approach to minimize lead’s mobility. The first step was to identify the boundaries of the area of the range to be treated. This included not only determining the length and width of the range area, but also the depth of lead within the area.

Depth was determined by taking sample cores of the area, which also identified “hot spots” where lead accumulation was greatest. Once the area was identified, the second step was to treat the area with TSP. Pure phosphate rock was used rather then fertilizers, as this phosphate is insoluble in water and will not cause an increase in phosphate runoff.

In this step, pilot testing was conducted. Here, various amounts (in increasing percentages by weight) of TSP were added to the affected soil areas, then the area was tested according to an EPA test method that identified the amount of leachable lead in a given soil sample. This test is called the Toxicity Characteristic Leaching Procedure, or TCLP. Separate TCLP testing of the range’s hot spots was conducted.

Upon completion of the pilot testing, which determined the amount of TSP needed at the range, the third step was to begin actual treatment of the range. Where the depth of the lead accumulation was shallow (less than two feet), then standard yard equipment, such as tillers, seed/fertilizer spreaders, and plows were used to mix TSP with the affected soil. Where the affected area’s lead accumulation was deeper than two feet, an auger was required to mix the TSP with the affected soil. Random testing of the range ensured the effectiveness of the treatment level.
3.2.2 Controlling Runoff

The BMPs for controlling soil erosion and surface water runoff are important to preventing lead from migrating off-site. There are two factors that influence the amount of lead transported off-site by surface water runoff: the amount of lead fragments left on the range and the velocity of the runoff.

The velocity of the water can successfully be controlled at outdoor ranges by: (1) using vegetative, organic, removable and/or permanent ground covers; and (2) implementing engineered controls which slow down surface water runoff and prevent or minimize the chances of lead migrating off-site. Bear in mind that safety considerations and potential ricochets need to be considered when implementing any engineered controls.

Vegetative Ground Cover

Planting vegetative ground cover (such as grass) is an important and easy erosion control method. Vegetation provides several benefits by minimizing the amount of lead that will run off the land surface during heavy rainfall. It is important to use a mixture of grass seeds to ensure that the cover will last into the future (i.e., annual rye grass lasts one year and dies and perennial rye grass lasts three to four years, then dies off). Fescue grasses form useful mats that are effective in controlling erosion.

Ground cover absorbs rainwater, which reduces the amount of water the lead is in contact with, as well as the time that the lead is in contact with the water. Furthermore, the ground cover will divert and slow down surface water runoff, thus helping to prevent lead from migrating off-site.

Grasses yield the greatest benefit at rifle and pistol ranges where the bullet impact areas are sloped, and water runoff and soil erosion may be more likely. Specific recommendations are to:

- Utilize quick growing turf grass (such as fescue and rye grass) for the grass covering of backstops, which can be removed prior to reclamation and replanted thereafter;
- Avoid vegetation that attracts birds and other wildlife to prevent potential ingestion of lead by wildlife; and
- Use grass to direct surface water drainage away from the target area (e.g., planting them at the top of the backstop or sand trap). This will minimize the water’s contact with lead bullet fragments, minimizing the potential for lead migration.

Grass is not impermeable; however, it does slow down the rate of flow and reduce the amount of lead entering the soil via rainwater. Remember, grass requires periodic maintenance (i.e., mowing) to maintain its effectiveness as well as for aesthetic reasons.

Mulches and Compost

Mulches and composts can reduce the amount of water that comes in contact with the lead fragments. In addition, mulches and compost contain hermic acid, which is a natural lead chelating agent that actually sorbs lead out of solution and reduces its mobility. At a minimum, the material should be two inches thick. These materials can be spread over any impacted area and/or low lying areas where runoff and lead may accumulate. Like vegetative covers, organic surface covers are not impermeable. In addition, the organic material needs periodic replacement to maintain effectiveness and aesthetic integrity. Furthermore, these materials should be removed prior to any lead removal event, as they may impede sifting or screening. **Note that these materials tend to be acidic (especially during decomposition), so, if low pH is a concern at your range, this option may not be appropriate.** Again, however, lime may be used to control pH (see Section 3.1.1)

Surface Covers

Removable Surface Covers

Removable surface covers may be effective at outdoor trap and skeet ranges. In this case, impermeable materials (e.g., plastic liners) are
placed over the shotfall zone during non-use periods. This provides the range with two benefits during periods of rainfall: (1) the shotfall zone is protected from erosion; and (2) the spent lead shot is contained in the shotfall zone and does not come in contact with rainwater.

Permanent Surface Covers

For outdoor rifle and pistol ranges, impact backstops and target areas can also be covered with roofed covers or other permanent covers to prevent rainwater from contacting berms. However, this method may be less desirable because of the cost to install the roof, which must be carefully designed to avoid safety issues with ricochets, etc.

For shotgun and other ranges, synthetic liners (e.g., asphalt, Astroturf™, rubber, other synthetic liners) can also be used beneath the shotfall zone to effectively prevent rainwater or runoff from filtering through lead and lead contaminated soil. Synthetic liners will generate increased runoff, which must be managed, however. No single type of liner is suitable for all situations based on site characteristics. Therefore, liners must be chosen on a site-specific basis, bearing in mind the site’s unique characteristics, such as soil type, pH level, rainfall intensity, organic content of soil, and surface water drainage patterns.

Engineered Runoff Controls

Runoff control may be of greatest concern when a range is located in an area of heavy annual rainfall because of an increased risk of lead migration due to heavy rainfall events. A “hard” engineered runoff control may be needed in this situation. A heavy rainfall event is defined as rainfall that occurs at such a rate that it cannot be absorbed into the ground and causes an increase in the volume and velocity of surface runoff. The impacts of rainfall are greater in rolling or sloped terrain (increases velocity of runoff) or where surface water bodies are located on, or immediately adjacent to, the range.

Examples of “hard” controls include:
- Filter beds
- Containment Traps and Detention Ponds
- Dams and Dikes
- Ground Contouring.

Designing and implementing these “hard” engineering controls may require the assistance of a licensed professional civil engineer. They are included in this manual to offer the reader a general understanding of these BMP options. However, this manual does not offer specific instructions for construction and operation of these controls. For information about designing and implementing any of these controls, or assistance with other range design questions, contact a licensed professional civil engineer having applicable experience or the NRA Range Department, at (800) 672-3888, ext. 1417. The National Sports Shooting Foundation (NSSF) may be contacted at (203) 426-1320 for specific references regarding the use and design of these controls.

Filter Beds

Filter beds are engineering controls built into an outdoor range to collect and filter surface water runoff from the target range. The collected runoff water is routed to a filtering system, which screens out larger lead particles, raises the pH of the water (thus reducing the potential for further lead dissolution), and drains the water from the range area. This technique may not completely prevent lead from entering the subsurface, since lead bullets, fragments and large particles may still remain on the range.

Filter beds should be established at the base of the backstop (see Figure 3-2). In addition to mitigating off-site migration, the filter beds work to raise the pH of the rainwater, which has fallen on the target range, to reduce lead dissolution, and to strain small lead particles out of the rainwater. The filters typically consist of two layers: a fine-grained sand bed underlain by limestone gravel or other neutralization material. By design, the backstops and berms direct the runoff so that it drains from the range to the filters. The collected water then soaks through the top sand layer into the neutralization material,
which raises the pH of the filtrate. The lead particles in the rainwater are collected on the sand, while the pH-adjusted water drains through the filter to a perforated drainage pipe located within the limestone gravel.

Filter beds are designed to capture fine particles of lead transported in surface water runoff. They are not designed to capture bullets. The operation and maintenance requirements of filter beds are minimal. Maintenance activity is limited to periodic removal of debris (such as litter, leaves, etc.) and occasional replenishment of the limestone.

The use of filter beds is most effective on sites with open, rolling terrain where surface water runoff is directed to them. At existing rifle and pistol ranges, a limited system of trenches and filters can be installed at the base of natural soil backstops or at natural drainage depressions.

Containment Traps and Detention Ponds

Containment traps and detention ponds are designed to settle out lead particles during heavy rainfall. Typically, they are depressions or holes in the range's drainage paths. Here, the lead-containing runoff passes through the trap or pond, allowing the lead bullet fragments to settle out. Vegetative cover can be placed in the drainage path to increase the effectiveness of containment traps and ponds by further reducing the velocity of runoff and allowing for more lead fragments to settle from the runoff. It is important to regularly collect the lead and send this lead to a recycler.

Dams and Dikes

At shotgun ranges, dams and dikes can also be used to reduce the velocity of surface water runoff. Dams and dikes must be positioned perpendicular to the direction of runoff to slow the flow of surface water runoff. To accomplish this, determine the direction of the range's surface water runoff. This will be particularly obvious at ranges with sloped terrain. The dams or dikes should be constructed using mounds of dirt that are approximately a foot high. These mounds should transect the entire range perpendicular to the stormwater runoff direction.

These runoff controls are most important at ranges at which off-site runoff is a potential problem, such as ranges where the lead accumulation areas are located upgradient of a surface water body or an adjacent property. Since lead particles are heavier than most other suspended particles, slowing the velocity of surface water runoff can reduce the amount of lead transported in runoff.
Ground Contouring

Another mechanism to slow runoff and prevent lead from being transported off site is ground contouring. By altering drainage patterns, the velocity of the runoff can be reduced. Furthermore, in areas where pH is high (resulting in a lower potential for lead dissolution), the soil can be graded or aerated to increase the infiltration rate of precipitation, so that rainwater is more easily absorbed into the soil. This slows down or prevents surface water runoff and off-site migration. It should be pointed out that this design, in effect, collects lead in the surface soils. Therefore, range operation and maintenance plans should include lead reclamation as well as adjusting the pH, and adding phosphate.

3.3 Lead Removal and Recycling (Step 3)

To successfully minimize lead migration, the most important BMP for lead management is lead reclamation. Implementing a regular reclamation program will allow you to avoid expensive remediation and potential litigation costs. Ranges in regions with high precipitation and/or with acidic soil conditions may require more frequent lead recovery since the potential for lead migration is greater. In regions with little precipitation and/or where the soil is somewhat alkaline, spent bullets may be allowed to accumulate on the soil for a longer time between reclamation events. It should be noted that to ensure that lead is not considered "discarded" or "abandoned" on your range within the meaning of the RCRA statute (i.e., a hazardous waste), periodic lead removal activities should be planned for and conducted. This typically requires one or more of the following:

- Hand Raking and Sifting
- Screening
- Vacuuming
- Soil Washing (Wet Screening, Gravity Separation, Pneumatic Separation)

These methods are discussed in detail below. Figure 3-3 provides examples of common lead reclamation equipment.

Figure 3-3 – Examples of Common Lead Reclamation Equipment

Example of final separation device (Patented Pneumatic Separation Unit) used with a Shaker System. Courtesy of MARCOR.
Also, it is important to be aware that state regulations may require that the material being sent for recycling have a minimum lead content in order to qualify as a scrap metal that can be shipped under a bill of lading (i.e., exempt from RCRA).

3.3.1 Hand Raking and Sifting

A simple BMP that can be done by club members, particularly at small ranges, is raking and/or sifting bullet fragments from the soil. Sifting and raking activities should be concentrated at the surface layer. This is a low-technology and low-cost management alternative for lead reclamation. Once collected, the lead must be taken to a recycler or reused. Arrangement with a recycler should be made prior to collecting any spent lead to avoid having to store the lead and avoid potential health, safety and regulatory concerns associated with storing lead.

At trap and skeet ranges, conducting sifting and raking activities in the shot fall zone (approximately 125 - 150 yards from the shooting stations) will yield the most lead. For sporting clay ranges, these activities should be conducted around tree bases, where lead shot tends to collect. Basically, the process consists of raking with a yard rake the topsoil in the shot fall areas into piles, as if you were raking leaves, removing any large debris (e.g., rocks, twigs, leaves, etc.), and then sifting the soil using screens.

Once the soil has been raked and collected, pass it through a standard 3/16 inch screen to remove the large particles. This process will allow the lead shot sized particles to pass through the screen. The sifted material (those not captured by the 3/16 inch screen) should be passed through a 5/100 inch screen to capture the lead and lead fragments. This process will also allow sand and other small sediment to pass through the screen. Screens can be purchased at many local hardware stores. The screens should be mounted on a frame for support. The frame size will vary based on the technique used by each range. For example, if one person is holding the framed screen, it may be better to use a smaller frame (2 feet by 2 feet) whereas, if several people are holding the framed screen, it can be larger.

Raking and sifting can be performed by club members on a volunteer basis. Some clubs provide incentives, such as reduced fees, to members who assist with the lead removal process. Other clubs have hired college students during the summer. A number of small clubs have found that reloaders will volunteer to rake in exchange for collected shot. Hand sifting and raking are cost effective lead removal techniques for small ranges, or low shooting volume ranges. However, these techniques may not be appropriate for situations in which there is a large volume of lead on the range. In this instance, reclamation machinery may be more appropriate.

Note: Those conducting the hand raking and sifting reclamation at ranges should protect themselves from exposure to lead. Proper protective gear and breathing apparatus should be worn. The Occupational Safety and Health Administration (OSHA) or an appropriate health professional should be contacted to learn about proper protection.

3.3.2 Purchasing/Renting Mechanical Separation Machinery

Reclamation equipment may be rented from local equipment rental services. One type of machine that it may be possible to rent for lead shot reclamation is known as a screening machine (also referred to as a mobile shaker, gravel sizer, or potato sizer). This device uses a series of stacked vibrating screens (usually two screens) of different mesh sizes and allows the user to sift the lead shot-containing soil (gathered by hand raking, sweeping, or vacuuming discussed above). The uppermost screen (approximately 3/16 inch mesh) collects larger than lead shot particles, and allows the smaller particles to pass through to the second screen. The second screen (approximately 5/100 inch mesh) captures lead shot, while allowing smaller particles to pass through to the ground. The lead shot is then conveyed to a...
container such as a five gallon bucket. In the Northeastern United States, the typical rental cost for this equipment is between $500 and $4,500 a week, depending on the size shaker desired. It may be possible to get more information on rentals for this type of equipment from heavy equipment rental companies.

Another possible option is to rent a vacuum system that will collect the lead shot-containing soil from the range. Here, vacuuming takes the place of hand raking or sweeping. A vacuum machine is used to collect the lead shot-containing soil. Once collected, the lead shot-containing soil must be sifted through a screening system (either a rental screening machine, or a series of home made framed screen sets). You may be able to obtain more information about renting vacuums or vacuuming services (e.g., it may include a person to operate the machinery) from heavy equipment rental companies.

Some clubs have found that performing their own lead reclamation to be very time consuming. Part of the reason these reclamations took so long is that the soils were wet. Reclamation is much easier under dry soil conditions. For example, one club reclaimed lead from their range using equipment they modified themselves. Twenty-five tons of lead were collected but the reclamation took over two years. Another club took a year to reclaim 10 tons of lead. A more preferable option may be to hire a reclamation company.

3.3.3 Hiring a Professional Reclamation Company

Another option for lead removal is to hire a professional reclaimer. Lead reclamation companies claim to recover 75%-95% of the lead in the soils. Generally, with reclamation companies there is no minimum range size requirement for lead reclamation. Concentration of lead is more important than quantity spread over a field, especially if it is a difficult range for reclamation (e.g., hilly, rocky, a lot of clay in the soil).

Please note that reclamation companies tend to be in high demand — it may take over a year for the company to start at your club. Therefore, it is wise to plan ahead and make the call to the reclamation company as early as possible.

Some reclamation companies require a site visit to view the topography, the soil composition, and amount of lead observed on the ground. During the visit, some companies may even do a site analysis to determine whether or not it is feasible to reclaim. This analysis identifies the location of lead, the expected recovery amount, and the depth lead reaches into the soils.

3.3.4 Reclamation Activities

Using machinery to reclaim lead usually requires that the area be clear of scrub vegetation. Grass, mulch, or compost is generally removed or destroyed during the reclamation process. Some reclamation companies have no problem beginning reclamation on a grassy field. Other reclamation companies will remove grass before or during reclamation (by burning it, if allowed locally, leaving behind the lead shot), and still others require that all vegetation be removed before they arrive at the range. Some companies will re-seed the area once the reclamation is completed.

Since sporting clay ranges generally have many trees, removal of vegetation as discussed above may not directly apply to existing sporting clay ranges. At these ranges, the focus is on removing vegetative debris (i.e., fallen limbs, tree bark, etc.) prior to reclamation. This may include removing some trees to gain better access with the reclamation machinery. Of course, when designing a new sporting clay range, steps to facilitate lead reclamation should be taken into account. For example, less and more widely spaced trees will facilitate lead reclamation.

Reclamation companies use several types of machinery to reclaim lead. Some companies drive their separation machinery over the site. The lead-laden soil is picked up, processed and then returned to the ground after most of the lead
is removed. Other companies scrape off the top several inches of soil from the ground, using a front-end loader to bring the soil/lead to stationary reclamation machines, and then return the soil to the field after reclamation. Many companies till the top two to five inches of soil and grass immediately prior to reclamation to facilitate the process (some companies may require this to be done prior to arrival on the range).

Regardless of how it is collected, the actual reclamation of the lead follows the same general pattern. Most often, it is sifted through a series of shaking screens. The lead and soil pass through shaking screens (usually at least two screens) of decreasing mesh (hole) size, with the topmost screen having the largest mesh. This part of the reclamation machinery is usually adapted from machinery used for potato or gravel sizing.

Any soil/debris automatically screened out as being too big or too small is either returned to the field or re-screened to ensure no lead is caught in the debris. This procedure is why moist, clay soils are more difficult to reclaim. The moist, clay soils can bind together into shot-sized pellets producing more “product” for the second part of the reclamation. The wet soils can also clog the screens.

For some reclamation companies, their process ends after sifting the soil and returning it to the ground. However, some companies take reclamation one step further. After screening, the resulting lead, soil, and other lead-sized particles enter a blowing system. Here the lead shot is easily separated from the soil and other debris by the blowing air. The lead is much more dense than the soil and other lead-sized debris so that it falls out first. Figure 3-3 depict examples of actual lead reclamation machinery.

Soil Washing (Physical and Gravity Separation)

Soil washing is a proven technology and another lead reclamation method used by some reclaimers to separate the lead particles from

Reclamation time varies depending on weather, site accessibility, range size, and number of personnel assigned to perform the reclamation.

Reclamation activities may generate dust, especially in drier western locations. To prevent or minimize dust from traveling off the range and causing complaints from neighbors, reclamation activities generating dust should only be conducted during periods of no wind. In addition, such activities should be completed as quickly as possible.

Vacuuming

Vacuuming has traditionally been used for removal of lead shot from trap, skeet and sporting clay ranges. Another way to apply this method involves removing the top layer of an earthen backstop or sand trap with shovels. It is then spread thinly over an impermeable material such as plywood. A vacuuming device is then used to collect the materials that are lighter than lead (e.g., sand or soil), while leaving behind the heavier materials (i.e., lead bullets/shots and fragments). The soil can then be returned to the range. This process is most efficient for dry, sandy soils without a lot of organic material. A more recent innovation is the use of a high suction vacuum. This vacuum itself does not have to be moved about, since a very long hose (up to 600 feet) is used to move in and around trees during the collection of lead shot at trap and skeet ranges.
Soil washing is the separation of soils into its constituent particles of gravel, sand, silt, and clay. Because of the much higher surface area and surface binding properties of clay, most lead contaminants tend to adhere to the clay particles.

Soil washing, therefore, attempts to generate a clean sand and gravel fraction by removing any fines adhering to the larger soil particles and, if necessary, to transfer contaminants bound to the surface of the larger particles to the smaller soil particles. Typically, the soils are first excavated from the range and then mixed into a water-based wash solution. The wet soil is then separated using either wet screening or gravity separation techniques. One benefit of this system of reclamation is that it does not require that soils be dry.

In addition, soil washing may be able to recover all or almost all lead particles through a combination of wet screen sizing and density separation. This technique is an option for remediation of a range being closed and may compare favorably from an economic standpoint with the disposal option.

Soils treated using this method have been shown to be below 5 mg/L TCLP and to have up to 99% of particulate lead removed. Treatment costs are site specific, but can range from less then $40 per ton (1999 levels) for simple physical/gravity separation up to about $100 per ton for processes involving leaching. Credits for recycled lead help offset the treatment cost and the cost of recycling any treatment sludges and concentrated soil fines. Water used in soil washing is from a closed loop system and should only be disposed at completion of cleanup. Experience shows the water to not be a RCRA regulated hazardous waste, therefore probably allowing disposal to a local wastewater treatment plant.

Wet Screening

With this method, particles larger and smaller than the surrounding soils are passed through a series of large-mesh to small-mesh screens. Each time the mixture passes through a screen, the volume of the soil mixture is reduced. Large particles such as lead shot/bullets and fragments are screened out of the soil/wash mixture early in the process and can be taken off-site for recycling - allowing the soil to be placed back on-site.

Gravity Separation

This technique can be used in cases where the lead particles are the same size as surrounding soil particles. The wet soil/wash mixture is passed through equipment, which allows the more dense materials (i.e., lead materials) to settle to the bottom of unit and separate out of the soil/wash mixture.

Pneumatic Separation

Pneumatic separation (see figure 3-3) is an effective means to enhance the traditional screening results. Traditional screening cannot separate shot and bullets from other shot and bullet sized material, i.e., rocks, stones, roots, and various debris. A recycling facility considers non-lead items as "contaminants" which drastically reduces the value of the recycled lead. Pneumatic separation utilizes an air stream, and specific density analysis, to effectively separate the shot/bullets from the other shot/bullet sized material.

3.3.5 BMPs to Assist Lead Reclamation and Recycling

There are several operational activities that should be conducted throughout the year to facilitate reclamation. The following is a discussion of these activities.

Frequency of Lead Removal

It is important to perform lead removal at a frequency appropriate for your site. The frequency is dependent on several factors. These include:

- Number of rounds fired
- Soil pH
- Annual precipitation
- Soil Type
- Depth to groundwater
Lead quantity, as estimated by the number of rounds fired, is a factor in determining the appropriate frequency of reclamation at ranges. It also assists in determining the cost of reclamation. One reclamation company indicated that reclamation was most cost effective when it contains at least 20 pounds of lead per square foot of backstop. Another source indicated that a minimum of 100,000 rounds per firing lane should be allowed before lead reclamation occurs. This would ensure good range operation and maintenance, while minimizing the cost per quantity of lead recovered.

For shotgun ranges, tracking the number of targets thrown can help indicate when the lead shot should be reclaimed. For example, considering environmental issues, the market for scrap lead and common cleanup methods, one source indicated that when a range has thrown at least 250,000 to 1,000,000 targets, depending on the shooting area, reclamation of the lead shot is encouraged. Another reclaimer indicated that if at least two pounds of lead per square foot have accumulated on the range, reclamation is recommended.

Because the number of rounds fired is important to know, establishing record keeping procedures to monitor the number of rounds fired is recommended. This can be accomplished by maintaining logbooks and asking shooters to list the number of rounds shot and the type/size of shot/bullets they use. This should be done by lane and by stand.

There are many ranges at which lead removal has not occurred for many years. Many of these ranges are used extensively. Such ranges are especially good candidates for lead removal and recycling. Subsequent removal frequency depends on range use and environmental factors. The NRA recommends a frequency of one to five years for lead cleanup, even on ranges with minimal use4. One possible approach to reducing the cost of reclamation more cost effective is for a number of ranges in the same geographical area to work together in organizing coordinated removals at their ranges. This will reduce the reclaimer travel and mobilization cost for each range.

Minimization of Vegetation

As discussed previously, vegetation is useful both for controlling the amount of runoff and erosion from the range and inhibiting lead mobility. However, excessive or unmaintained vegetative cover can interfere with reclamation activities. For example, large amounts of vegetation impedes the screening and sifting processes used by many reclamation companies. Therefore, prior to reclamation activities, it is best to remove, reduce, or mow excessive vegetation from the area. Once the reclamation has been conducted, quick-growing vegetation such as a rye/fescue grass mix should be replanted. This process should be repeated for each reclamation event. In addition, heavily wooded areas may inhibit lead reclamation because they are less accessible by heavy reclamation machinery. For ranges that are heavily wooded, it is recommended that you minimize the vegetation or modify the range design to allow lead reclamation equipment access to the range. Access to the impact area should be developed to facilitate reclamation. **Make sure that the pathways do not present a safety risk.**

Innovative Landscaping

Some new ranges are landscaping their ranges to include a sand track (an area the size of the shotfall zone that is only sand) located behind some aesthetically pleasing shrubs. This allows the spent shot to concentrate on the sand, making it very easy to perform reclamation because there is no interference by vegetation.

Selecting a Lead Reclaimer

In ensuring that the reclamation is conducted appropriately, selecting a reclaimer that is right for your range is extremely important. Some lead reclamation companies will travel to your range and assess the range prior to conducting

lead collection activities. This assessment trip allows the reclamation company to confirm information gained during initial discussions, as well as to assist in appropriately estimating costs, time required, and the estimated volume of lead at the range. Conducting this pre-assessment also allows you to determine which reclaimer is right for your situation.

Questions Commonly asked by the Reclaimer

When you contact a reclamation company, it is likely that the reclaimer will ask several general questions. Typical questions include:

- When was the last reclamation conducted?
- How many rounds have been shot since that last reclamation?
- What is the use frequency of the range?
- What are the site characteristics and soil types?
- What type of bullet containment device is used at the range?

Answering these questions will be a lot easier if you have maintained good records, as is suggested above.

Questions to ask the reclaimer

When choosing a reclaimer be sure to ask the general questions about prior cleanups (past projects), insurance to cover company and cleanup (general liability insurance, pollution insurance, bonding, etc.), and site plans to ensure health and safety of workers and range personnel. Other questions you may want to ask the reclaimer include:

- Can the reclamation take place outside normal hours of range operation?
- What costs are involved?
- How long will the reclamation take?
- Does vegetation at the range need to be removed?

Economic Considerations

Lead removal costs may vary dramatically depending upon the type and volume of soil or sediments, topography, amount of lead, location, and reclamation company and technique used. Because the economics vary due to many factors, this manual does not provide specific estimates. However, it is important to understand that lead reclamation will generally require an expenditure by the range, even when considering any monetary returns from selling reclaimed lead. By tracking the range use and using the criteria discussed earlier (see Frequency of Lead Removal), the reclamation costs per quantity of lead can be optimized. For long term range management, routine lead removal will help future cost avoidance by minimizing the need for costly site remediation.

Some reclaimers bid the lowest flat fee with all the lead provided to the range for selling. The range owners/operators must then consider the transportation costs and recycling fee associated with sending the reclaimed shot and bullets to a recycling company. Alternatively, the reclaimer will use the economic return of lead sold for recycling, based on the volume reclaimed and the current value of lead, to reduce the total cost of reclamation and recycling. Although the value of lead varies, the scrap value of reclaimed lead typically falls between $.06 and $.25 per pound, excluding transportation cost. See the appendix for contact information regarding lead reclamation companies that specialize in lead removal at outdoor ranges.

3.4 Documenting Activities and Record Keeping (Step 4)

Documenting activities and keeping good records is of paramount importance for an effective lead management program at a range. Owners/operators should document all activities done at the range with respect to BMPs and recycling of lead. Records should be kept on when services were provided and who provided them.

Owners/operators may want to document what type of BMP(s) were implemented to control lead migration, the date of service, and who did the services. The records should be kept for the life of the range. Records may be used to show that owners/operators are doing their part to
help prevent lead migration off-site and show that they are doing their part to be stewards of the environment.

3.5 Additional Economic Considerations

Not all BMPs need to be implemented at once. Many can be phased in over time. However, it is important to begin implementing BMPs, especially lead reclamation and recycling, as soon as possible. Implementing the most appropriate BMPs for your range requires consideration of your range characteristics and costs associated with implementing the BMPs. This manual provides a large selection of BMPs that vary in both cost and sophistication. In selecting BMPs for your range, it is important to look at all costs and all the benefits (or potential problems) associated with each BMP.

3.6 Summary of Key BMPs for Shooting Ranges

There are several BMPs that are highly recommended to be implemented, if applicable to your range. Table 3-1 identifies the advantages and disadvantages of all BMPs discussed in this chapter. This table serves as a quick reference guide for potential BMPs. Readers should refer back to the detailed discussions above for further information regarding these BMPs.

3.7 Certificate of Recognition

EPA has established a voluntary process whereby a shooting range may apply for a "Certificate of Recognition." The Certificate is intended to be awarded to ranges that have certified that they have prepared and intend to implement, or have implemented, a written Environmental Stewardship Plan that is consistent with the EPA Best Management Practices for Lead at Outdoor Shooting Ranges manual. To assist in this process, Appendix E contains a template for an Environmental Stewardship Plan, an electronic copy of which is available on EPA’s shooting range website (http://www.epa.gov/region2/leadshot) in several formats. This template, combined with information provided throughout this manual, other resources and guidance, and site-specific factors, will help in guiding the process of evaluating relevant information about your facility and determining which BMP(s) might be appropriate for your ranges. EPA’s template was adapted from Appendix C of the National Shooting Sports Foundation’s manual, Environmental Aspects of Construction and Management of Outdoor Shooting Ranges (the NSSF manual.) Accordingly, use of that template would also be acceptable for use in EPA’s Certificate of Recognition program.

In order to request this certificate, a range must submit a notice to the Lead Shot Coordinator in EPA Region 2 stating that they have completed an Environmental Stewardship Plan as indicated above and are intending to implement it within six months. The certificate is intended to convey, to all that may see it, that the range has declared its intention to properly manage lead shot and bullets. However, it must be noted that a certificate is not a permit to operate and provides no additional operational approval, implied or otherwise.
BMPs for Preventing Lead Migration

Monitoring and Adjusting pH

<table>
<thead>
<tr>
<th>BMP Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>

Immobilizing Lead

<table>
<thead>
<tr>
<th>BMP Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>

Controlling Runoff

<table>
<thead>
<tr>
<th>BMP Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetative Ground Cover (e.g., grass, etc.)</td>
<td>1. Easy 2. Aesthetically pleasing 3. Relatively inexpensive 4. Effectively slows and can redirect runoff 5. Some may "bioabsorb" lead</td>
<td>1. Requires periodic maintenance 2. Must be removed or reduced prior to reclamation 3. Excessive vegetation will interfere with reclamation</td>
</tr>
<tr>
<td>Organic Surface Cover (e.g., mulch and compost)</td>
<td>1. Easy 2. Aesthetically pleasing 3. Relatively inexpensive 4. Effectively slows and can redirect runoff</td>
<td>1. Requires periodic maintenance 2. Must be removed prior to reclamation 3. May not be suitable at ranges with acidic soil conditions</td>
</tr>
<tr>
<td>Filter Beds</td>
<td>1. Diverts and treats lead contaminated runoff 2. Low maintenance 3. Assists with range drainage</td>
<td>1. May require hiring a licensed engineer 2. Higher initial setup cost</td>
</tr>
</tbody>
</table>
Table 3-1 – Continued

<table>
<thead>
<tr>
<th>Controlling Runoff (cont.)</th>
<th>BMP Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dams and Dikes</td>
<td>1. Low maintenance 2. Assists with range drainage</td>
<td>2. Higher initial setup cost</td>
</tr>
<tr>
<td></td>
<td>Ground Contouring</td>
<td>1. Lower initial setup cost 2. Assists with range drainage</td>
<td>1. May require hiring a licensed engineer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlling and Containing Bullets</th>
<th>Bullet Containment Devices</th>
<th>BMP Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Earthen Backstop</td>
<td>1. Minimal (if any) initial setup cost 2. Accepts firing from various guns and directions</td>
<td>1. Build up of bullets increases chances of ricochet and fragmentation problems 2. Lead removal requires mining 3. Potential decreased value of lead because it is less clean than lead reclaimed from other trap systems 4. Does not eliminate lead's introduction into the environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand Trap</td>
<td>1. Low initial setup cost 2. Ease of maintenance 3. Accepts firing from various guns and directions</td>
<td>1. Build up of bullets increases chances of ricochet and fragmentation problems 2. Lead removal requires mining</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit and Plate Trap (Sand)</td>
<td>1. Low initial setup cost 2. Simple installation 3. Lead removal and recycling requires less extensive mining</td>
<td>1. Lead builds up on top layer of sand causing ricochet problems 2. Increased bullet fragmentation 3. Higher level of maintenance than sand traps</td>
<td></td>
</tr>
</tbody>
</table>

1 Much of this information was obtained from Action Target's Bullet Containment Trap Technologies video. Reference to various pros and cons of individual bullet containment devices is included in this manual for informational purposes only. The USEPA does not endorse any particular bullet containment device, design, or product.
Controlling and Containing Bullets (Cont.)

<table>
<thead>
<tr>
<th>Bullet Containment Devices (cont.)</th>
<th>BMP Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| | Escalator Trap (Steel) | 1. Can be used indoors and outdoors | 1. Deflection plates require regular oiling. The oil used is hazardous and can easily migrate at outdoor ranges
2. Relatively high maintenance
3. Poor lead collection because the bullets may become clogged at the spiral collection area at the top of the deflection plate
4. Increased bullet fragmentation
5. May require rubber curtains to be placed in front of the trap to slow bullets
6. More noise
7. Possible creation of lead dust |
| | Vertical Swirl (Steel) | 1. Can be used indoors or outdoors
2. Bullets are captured in pure form in containers, thus removal and recycling is easy | 1. Does not accept shooting from all directions
2. Corners where each unit meet can cause ricochet and fragmentation problems
3. More noise
4. May create lead dust |
| | Wet Passive Bullet Trap (Steel) | 1. Can be used indoors and outdoors
2. Excellent results (i.e., low ricochet, low fragmentation, ease of removal)
3. Bullets are captured in containers, thus removal and recycling is easy | 1. Expensive
2. Oil and water mixture is hazardous
3. More noise |
| | Lamella Trap | 1. Can be used indoors or outdoors
2. Reduction of lead dust | 1. Rubber strips quickly become destroyed and must be replaced
2. Potential fire hazard
3. High maintenance
4. Scattered lead fragments mixed with rubber can migrate; lead contaminated granules are hazardous and require special handling |
Controlling and Containing Bullets (Cont)

Bullet Containment Devices (cont.)

<table>
<thead>
<tr>
<th>BMP Option</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Rubber Granule | 1. Can be used indoors or outdoors
2. Reduction of lead dust
3. Minimizes fragmentation, compared with some backstops | 1. Rubber strips can quickly become destroyed and must be replaced
2. Some pose potential fire hazard, although fire-retardant/resistant materials are available in some designs
3. High maintenance
4. Scattered lead fragments mixed with rubber can migrate; lead contaminated granules are hazardous and require special handling |
| Shock Absorbing Concrete | 1. Adaptable can be formed in any shape
2. Can be used to reduce erosion in soil berms/target emplacements
3. Crushed concrete can potentially be recast after fragments removed | 1. Mechanical lifting and handling equipment must be used during installation and maintenance
2. High maintenance (replacement) costs |

Removal and Recycling of Lead

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Hand Raking and Sifting | 1. Easily done by club members
2. Inexpensive
3. Can be done outside operating hours
4. Relatively effective | 1. May be more time consuming at large ranges
2. Weather sensitive (i.e., works best under dry conditions)
3. Exposure to lead and lead dust possible |
| Screening | 1. Effective
2. Potential economic returns | 1. Vegetation must be removed
2. Weather sensitive (i.e., works best under dry conditions) |
| Vacuuming | 1. Effective
2. Can be used at least accessible ranges
3. Less vegetation needs to be removed | 1. Weather sensitive (i.e., works best under dry conditions) |
| Soil Washing | 1. Effective at cleaning the soil to remove the lead particles so one is left with non-lead soil | 1. Vegetation must be removed |
References

Battelle Memorial Institute, *Field Demonstration of a Sieving and Stabilization Technology on Lead-Contaminated Soils at a Small Arms Range at Mayport Naval Air Station*, Columbus, Ohio, February 1991

Brister, B. *The Speed Factor*, Field and Stream, January 1995

Connecticut Coastal Fisherman's Ass'n v. Remington Arms Co., Inc., 989 F.2d 1305 (2d Cir. 1993)

National Rifle Association of America, *Metallic "Bullets" Lead Deposits on Outdoor and Indoor Firing Ranges*, 1991

Sever, C.W., *Lead and Outdoor Ranges*, Proceedings from the National Range Symposium, October 17-19, 1993, Salt Lake City, Utah

Sporting Arms and Ammunition Manufacturers Institute, Inc., *Lead Mobility at Shooting Ranges*, Newtown, CT, 1996

Appendix A:
Resources

This manual provides contacts for lead reclamation companies, lead recycling companies, bullet trap manufacturers, and organizations that provide prevention and/or remediation techniques to assist clubs and firing ranges in implementing Best Management Practices for shooting ranges. The list was updated for the June 2005 printing. Vendors who are interested in being added to the list of lead reclaimers or remediation contractors should contact:

Lead Shot Coordinator
RCRA Compliance Branch
US EPA Region 2
290 Broadway
New York, NY 10007-1866
Telephone: (212)637-4145
E-mail: Leadshot.Region2@epa.gov
Lead Recycling Companies

Below is a list of recycling companies for lead in soils and spent lead shot/bullets that were contacted during the writing of this manual. Lead recycling companies smelt lead. It is not inclusive and is included for informational purposes only. Local scrap metal recyclers may also accept spent lead shot or spent bullets. Mention of these companies does not serve as an endorsement by the EPA.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Contact Person(s)</th>
<th>Email</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Doe Run Company</td>
<td>HC1 Box 1395, Boss, MO 65440</td>
<td>800-633-8566, 573-626-3476</td>
<td>Lou Magdits</td>
<td>l.magdits@doerun.com</td>
<td></td>
</tr>
<tr>
<td>East Penn Manufacturing Company, Inc.</td>
<td>P.O. Box 147, Lyon Station, PA 19536</td>
<td>610-682-6361, 800-596-1111</td>
<td>Rick Leiby</td>
<td></td>
<td>Web Site: http://www.eastpenn-deka.com</td>
</tr>
<tr>
<td>Gulf Coast Recycling</td>
<td>1901 N. 66th St, Tampa, FL 33619</td>
<td>813-626-6151, 813-626-6151</td>
<td>William Weston</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinsbursky Brothers, Inc.</td>
<td>1314 N. Anaheim Blvd, Anaheim, CA 92801</td>
<td>714-738-3516, 714-738-3516</td>
<td>Paul Schneider</td>
<td></td>
<td>Web Site: http://www.kinsbursky.com</td>
</tr>
<tr>
<td>Reserve Trading Corp.</td>
<td>P.O. Box 302, Medina, OH 44258</td>
<td>330-723-3228</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lead Reclamation Companies

Below is a list of reclamation companies for lead in soils and spent lead shot/bullets that were contacted during the writing of this manual. Lead reclamation companies reclaim lead from ranges. It is not inclusive and is included for informational purposes only. Mention of these companies does not serve as an endorsement by the EPA.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>Contacts</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brice Environmental</td>
<td>3200 Shell St, P.O. Box 73520, Fairbanks, AK 99707</td>
<td>Craig Jones 907-456-1955 www.briceinc.com</td>
<td>Reclaims primarily from earthen backstops and sand traps.</td>
</tr>
<tr>
<td>En-Range, Inc.</td>
<td>3326 NW 29th St, Miami, FL 33142-6310</td>
<td>Thomas M. Taylor 305-999-9965 Fax 305-835-8645 Email: enrange1@yahoo.com www.en-range.com</td>
<td>Provides lead reclamation and other environmental and maintenance services.</td>
</tr>
<tr>
<td>Karl & Associates, Inc.</td>
<td>20 Lauck Road, Mohnton, PA 19540</td>
<td>Edmund Karl Ill 610-856-7700</td>
<td>Works primarily in the mid-Atlantic area. Lead-containing soil is physically removed and sent to licensed disposal sites or licensed recycling facilities.</td>
</tr>
<tr>
<td>MARCOR</td>
<td>246 Cockeysville Road, Hunt Valley, MD 21030</td>
<td>Dave Jungers 410-785-0001 www.marcor.com</td>
<td>Uses a pneumatic separation unit to remove lead from contaminated soil and treats soil to pass TCLP.</td>
</tr>
<tr>
<td>Sears Trucking Company</td>
<td>P.O. Box 38, El Reno, OK 73036</td>
<td>Garland Sears 800-522-3314 Fax 405-262-2811</td>
<td>Physically removes lead from soils at trap and skeet ranges.</td>
</tr>
<tr>
<td>Solucorp Industries, Ltd.</td>
<td>250 West Nyack Road, West Nyack, NY 10994</td>
<td>Mike DeLuca 845-623-2333 Fax 845-623-4987 Email: solucorpmb@aol.com www.solucorpltd.com</td>
<td>Removes and treats soil using their Molecular Bonding System (MBS) soil stabilization technology.</td>
</tr>
<tr>
<td>Southern Lead Removal</td>
<td>P.O. Box 2645, Daytona Beach, FL 32115</td>
<td>Kevin Gilchrist 386-763-0115 Fax 386-761-6991</td>
<td>Removes lead from soil and treats soils at all types of ranges.</td>
</tr>
<tr>
<td>Sport Shooting Services</td>
<td>P.O. Box 667, Crawfordville, FL 32326</td>
<td>Ed Tyer 850-926-7375 Cellphone 850-294-0132 Email: envirorange@aol.com</td>
<td>Removes lead from earthen berms, uses a shaker and screen system to separate lead from soils, rents screening equipment, and consults on range design, primarily in Florida.</td>
</tr>
<tr>
<td>Terra Resources, Ltd.</td>
<td>HC4 Box 9311, Palmer, AK 99645</td>
<td>Larry Wood 907-746-4981 Cellphone: (907) 232-5059 Fax: 907-746-4980 www.terrrawash.com</td>
<td>Uses gravimetric process to separate lead and TerraWash™ soil washing technology.</td>
</tr>
<tr>
<td>Waste Recycling Solutions, Inc.</td>
<td>1850 Route 112, Medford, NY 11763</td>
<td>Tommy Arabia, President 631-654-3811</td>
<td>Uses a vacuum system to remove lead from trap and skeet ranges.</td>
</tr>
<tr>
<td>Entact</td>
<td>1010 Executive Court, Suite 280, Westmont, IL 60559</td>
<td>630-986-2900 www.entact.com</td>
<td>Performs physical removal of the lead from backstops, chemical treatment of soils and returns soil to the backstop.</td>
</tr>
</tbody>
</table>
Other Resources

Below is a list of additional phone numbers that may be of use if you have general questions including questions on range construction, design, and implementing BMPs.

<table>
<thead>
<tr>
<th>U.S. Fish and Wildlife Service</th>
<th>Institute of Scrap Recycling Industries, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4401 North Fairfax</td>
<td>1325 G Street, NW, Suite 1000</td>
</tr>
<tr>
<td>Arlington, VA 22203</td>
<td>Washington, DC 20005-3104</td>
</tr>
<tr>
<td>703/358-2156</td>
<td>202/737-1770</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead Industries Association, Inc.</th>
<th>National Rifle Association of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Main Street</td>
<td>11250 Waples Mills Road</td>
</tr>
<tr>
<td>Sparta, NJ 07871</td>
<td>Fairfax, VA 22030</td>
</tr>
<tr>
<td>973/726-LEAD (973/726-5323)</td>
<td>800/NRA-3888</td>
</tr>
<tr>
<td>fax: 973/726-4484</td>
<td>Web site: http://www.nra.org</td>
</tr>
<tr>
<td>Web site: http://www.leadinfo.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Shooting Sports Foundation and National Association of Shooting Ranges</th>
<th>Sporting Arms and Ammunition Manufacturers' Institute, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Mile Hill Road</td>
<td>Flintlock Ridge Office Center</td>
</tr>
<tr>
<td>Newtown, CT 06470</td>
<td>11 Mile Hill Road</td>
</tr>
<tr>
<td>203/426-1320</td>
<td>Newtown, CT 06470-2359</td>
</tr>
<tr>
<td></td>
<td>203/426-4358</td>
</tr>
<tr>
<td>NASR web site: http://www.rangeinfo.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wildlife Management Institute</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1101 14th Street, N.W. Suite 801</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20005</td>
<td></td>
</tr>
<tr>
<td>202/371-1808</td>
<td></td>
</tr>
<tr>
<td>Web site: http://www.wildlifemanagementinstitute.org</td>
<td></td>
</tr>
</tbody>
</table>
Web Resources

<table>
<thead>
<tr>
<th>Description</th>
<th>Web Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Government Sites</td>
<td></td>
</tr>
<tr>
<td>U.S. EPA’s Outdoor Shooting Range Home Page</td>
<td>http://www.epa.gov/region2/waste/leadshot/</td>
</tr>
<tr>
<td>U.S. Occupational Safety and Health Administration (OSHA)</td>
<td>http://www.osha.gov/</td>
</tr>
<tr>
<td>National Institute for Occupational Safety and Health (NIOSH)</td>
<td>http://www.cdc.gov/niosh/</td>
</tr>
<tr>
<td>State Government Sites</td>
<td></td>
</tr>
<tr>
<td>Florida: BMPs for Shooting Ranges</td>
<td>http://www.dep.state.fl.us/waste/categories/shooting_ranges/</td>
</tr>
<tr>
<td>Minnesota: Poster for “Firing Range Hazards”</td>
<td>http://www.cdc.gov/niosh/mnables.html</td>
</tr>
<tr>
<td>Ohio: Lead Shot Reclaimers list</td>
<td>http://www.epa.ohio.gov/dhwm/leadrecy.htm</td>
</tr>
<tr>
<td>Wyoming: Lead Recyclers List</td>
<td>http://deq.state.wy.us/outreach/lead.htm</td>
</tr>
<tr>
<td>Court Decisions</td>
<td></td>
</tr>
<tr>
<td>Connecticut Coastal Fishermen’s Association v. Remington Arms</td>
<td>http://www.dueidall.fit.edu/summer/rcra.htm</td>
</tr>
<tr>
<td>Long Island Soundkeeper Fund and NY Coastal Fishermen’s Assoc. v. New York</td>
<td>http://www.epa.gov/region02/waste/leadshot/lisfnyac.htm</td>
</tr>
<tr>
<td>Articles and Research</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Env. Center (AEC) -- Small Arms Range Technology</td>
<td>http://aec.army.mil/usaec/range/operations03.html</td>
</tr>
<tr>
<td></td>
<td>http://aec.army.mil/usaec/technology/rangex03.html</td>
</tr>
<tr>
<td></td>
<td>http://aec.army.mil/usaec/technology/rangex00a.html</td>
</tr>
<tr>
<td>Florida Center for Solid and Hazardous Waste Management</td>
<td>http://www.floridacenter.org/</td>
</tr>
<tr>
<td>National Association of Shooting Ranges’ Reference Library</td>
<td>http://www.rangeinfo.org/resource_library/facility_mngmnt/</td>
</tr>
<tr>
<td>Bullet Trap Manufacturer</td>
<td>Designs Available</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Action Target
(501) 377-8033
Contact: John Curtis, CEO
actiontarget.com</td>
<td>Total Containment Trap (TCT)</td>
</tr>
<tr>
<td>Action Target
(Cont.)
see details above</td>
<td>Rubber Berm Trap (RBT)</td>
</tr>
</tbody>
</table>

*EPA does not endorse any particular bullet containment device or product. Information on this table is offered to readers for a general understanding of some common bullet trap options and is based on vendor marketing literature.
<table>
<thead>
<tr>
<th>Bullet Trap Manufacturer</th>
<th>Designs Available</th>
<th>Estimated Cost of Trap</th>
<th>Price Includes</th>
<th>Not Included in Price</th>
<th>Usage of Trap</th>
<th>Description</th>
<th>General Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copius Consultants</td>
<td>Containment/Recovery System</td>
<td>Ranges from $600/linear foot to $1,000/linear foot (Price varies with specific design selected)</td>
<td>Purchase of Equipment</td>
<td>Shipping</td>
<td>Rifle Pistol Machine gun Shotgun</td>
<td>This is a modification of the sand backstop. Sizes vary depending on the needs and characteristics of the range; however, average height is 10' - 12' and average width is 12' - 14'. The trap utilizes ballistic grade sand to trap bullets and bullet fragments in a sealed system. The system contains collection and filtration systems to ease reclamation and eliminate off-site migration of lead.</td>
<td>Specific recommended bullet trap is based on the following: 1) Type of usage, quantity of usage, etc. 2) Location in country 3) Environmental issues (e.g., location near a waterbody) Price will depend on the design adopted. One unique feature is that shooting can occur at any angle.</td>
</tr>
<tr>
<td>Meggitt Defense Systems Caswell</td>
<td>Granular Rubber Bullet Traps</td>
<td>$940 to $1,300/linear foot (dependent on type of trap and other features selected)</td>
<td>Purchase of Equipment Installation Delivery (Freight included)</td>
<td>Pistol Rifle Armor- Piercing Shotgun Machine gun Tracers (Speak to Sales Rep.)</td>
<td>The trap absorbs bullets fired from any angle or distance. No exposed steel surfaces; bullets are not fragmented. The granulated material used in the trap can be turned over quickly to recover the spent rounds.</td>
<td>Suitable for indoor and outdoor ranges. Eight types of traps available. Custom builds traps. Provides site-specific design, if requested. Reclamation is recommended after approximately 60,000 rounds have been fired (depending on trap type.)</td>
<td></td>
</tr>
</tbody>
</table>

1 EPA does not endorse any particular bullet containment device or product. Information on this table is offered to readers for a general understanding of some common bullet trap options and is based on vendor marketing literature.
<table>
<thead>
<tr>
<th>Bullet Trap Manufacturer</th>
<th>Designs Available</th>
<th>Estimated Cost of Trap</th>
<th>Price Includes</th>
<th>Not Included in Price</th>
<th>Usage of Trap</th>
<th>Description</th>
<th>General Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range Systems (888) 999-1217 (763) 533-8200 Contact: Steve Thomas rang-systems.com</td>
<td>Encasulator Bloc Trap™ Encasulator Granular Trap™</td>
<td>$800-$1,250/linear ft (Price varies with design criteria and product selection)</td>
<td>Purchase of Equipment Installation</td>
<td>Freight</td>
<td>Pistol</td>
<td>The bullet traps are constructed for maximum bullet retention with minimum space and cost. The bullet traps virtually eliminate ricochet and airborne lead.</td>
<td>Full service shooting range provider from design and engineering to construction and maintenance. Custom-built traps with exclusive patented rubber technology.</td>
</tr>
<tr>
<td>Savage Range Systems (413) 588-7001 Contact: Joan Drucker snailtraps.com</td>
<td>The SNAIL™ Trap</td>
<td>Two types of traps: Pistol Wet: $2,250/linear ft Pistol Dry: $2,150/linear ft Rifle Wet: $2,400/linear ft Rifle Dry: $2,300/linear ft</td>
<td>Purchase of Equipment Installation</td>
<td>Shipping Installation</td>
<td>Rifle (up to .50 cal BMG) Pistol</td>
<td>The SNAIL trap is designed with low angle entrance ramps to guide the bullet into the circular deceleration chamber without scarring the plate. The bullet loses all of its energy in the chamber and drops into a collection system. The use of water and synthetic oil contains the lead particulates and dust, and minimizes friction on the plates.</td>
<td>Usage for indoor and outdoor ranges. Can also be provided with a conveyance system that drops the bullet to a single collection point (e.g., 55-gallon drum) for recycling. Low-maintenance system.</td>
</tr>
</tbody>
</table>

1. EPA does not endorse any particular bullet containment device or product. Information on this table is offered to readers for a general understanding of some common bullet trap options and is based on vendor marketing literature.
<table>
<thead>
<tr>
<th>Bullet Trap Manufacturer</th>
<th>Designs Available</th>
<th>Estimated Cost of Trap</th>
<th>Price Includes</th>
<th>Not Included in Price</th>
<th>Usage of Trap</th>
<th>Description</th>
<th>General Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stapp EBC, Incorporated</td>
<td>STAPP Bullet Catcher</td>
<td>Varies by specific design (measured by square foot)</td>
<td>Purchase of Equipment, Installation, Delivery (Freight)</td>
<td>Pistol & Rifle (best for calibers up to 12mm)</td>
<td>Can handle jacketed rounds and tracers</td>
<td>The STAPP bullet catcher (consisting of a bottom rubber liner, drainpipe reservoir, rubber granule fill, and cover layer of rubber) collects lead and any infiltrating water without runoff. The system is constructed over an earthen berm and can be modified to any range configuration. Projectiles are completely collected by the bullet catcher with minimal fragmentation. The surrounding structure is ricochet-proof even under the most extreme temperatures.</td>
<td>Designs are site adapted. Reclamation can be performed by Stapp EBC or by range personnel. Email: mciskowski-trc@verizon.net</td>
</tr>
</tbody>
</table>

1 EPA does not endorse any particular bullet containment device or product. Information on this table is offered to readers for a general understanding of some common bullet trap options and is based on vendor marketing literature.
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Designs Available</th>
<th>Estimated Cost of Trap</th>
<th>Price Includes</th>
<th>Not Included in Price</th>
<th>Usage of Trap</th>
<th>Description</th>
<th>General Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super Trap Inc. (951) 736-9440</td>
<td>Gel-Cor™ Class A, Fire-Rated Rubber Bullet Traps ELMR™ Tactical Shooting Ranges</td>
<td>Approx $520 to $1,600 per linear foot</td>
<td>Purchase of Equipment Installation</td>
<td>Shipping (Price will depend on destination)</td>
<td>Rifle & Pistol (up to and including .50 cal) Machine Gun Armor Piercing Tracer & Incendiary Ammunition</td>
<td>STI specializes in tactical shooting ranges. The firing range system captures and contains bullets whole, using a treated, granular ballistic media of recycled pure SBR (styrene-butadiene rubber), free of all steel and fiber contaminants that could normally allow fires to ignite. The infrastructure is 10 gauge galvanized steel and the hopper/deflection baffle is 3/8” AR 500 steel rifle rated (indoor and outdoor). Outdoor Ranges: The backstop base typically lies on a graded berm at the appropriate angle determined by the user and STI staff. SACON® can absorb bullets and prevent lead contamination, replacing railroad ties, logs, brick walls and concrete enclosures on firing ranges.</td>
<td>STI’s bullet trap systems eliminates hazardous materials contamination (TCLP tests below 1ppm), in addition to preventing ricochets and lead splash-back. SACON® can absorb bullets and prevent lead contamination, replacing railroad ties, logs, brick walls and concrete enclosures on firing ranges, as well as custom built traps.</td>
</tr>
<tr>
<td>Art Fransen, Refeed, L.A.S.D. 1001 Commerce St Corona, CA 92880</td>
<td>Super Trap® Range Backstops SACON® Perimeter Facilities, Wells, Blocks & Tiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: (951)736-9450</td>
<td>Email: info@supertrap.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reclamation is recommended after approximately 100,000 to 130,000 rounds per 4 ft lane, based on type of shooter position and layout of targetry (static vs. dynamic.) Lead reclamation is performed using a vacuum air density separator system. SACON® yet on a graded berm at the appropriate angle determined by the user and STI staff. SACON® can absorb bullets and prevent lead contamination, replacing railroad ties, logs, brick walls and concrete enclosures on firing ranges. Use of recycled rubber media in the trap may qualify the range for improvement and grant funding. Contact regional recycling associations for more information. STI offers more than six versions of Tactical Shooting Ranges.</td>
<td></td>
</tr>
<tr>
<td>supertrap.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 EPA does not endorse any particular bullet containment device or product. Information on this table is offered to readers for a general understanding of some common bullet trap options and is based on vendor marketing literature.
Appendix B: Lead Shot Alternatives

Another method of preventing lead contamination at pistol, rifle, trap, skeet, or sporting clays ranges is to use less toxic or non-lead ammunition.

Much progress has been made in the development of alternatives to lead shot for hunting uses. Information gathered since 1976 on lead poisoning of endangered and non-endangered migratory birds due to lead shot ingestion led the United States Fish and Wildlife Service (USFWS) to consider several alternatives to eliminate lead poisoning among migratory waterfowl birds. A ban on lead shot for waterfowl hunting was phased in beginning in 1986 and finalized in 1991. Lead shot is also now banned for shotgun hunting occurring near wetlands in national wildlife refuges. Starting in the fall of 1998, the USFWS banned the use of lead shot in waterfowl production areas. Additionally, many state-managed hunting areas require non-toxic shot for upland/small game hunting.

There are several alternatives to lead shot on the market today and still more alternatives are being developed. Before being used for waterfowl hunting, these alternatives must be approved by the USFWS. Bismuth, steel, tungsten/iron, and tungsten/polymer shots have been approved by the USFWS and additional alternative shot materials are in the USFWS approval process. Most of the ammunition manufacturers in the United States, as well as the military, have developed non-toxic alternatives to lead. Research in Europe may also result in additional non-toxic shot alternatives from which U.S. shooters may choose in the future. The following pages compare lead shot to non-toxic, alternative shot.
Summary of Lead Shot Alternatives

<table>
<thead>
<tr>
<th>Shot Material</th>
<th>Approximate Cost per 25 Round Box*</th>
<th>Ballistic Performance</th>
<th>Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>$5.00/box</td>
<td>Standard to which all alternatives are compared</td>
<td>Readily available</td>
<td>Lead is heavy and malleable</td>
</tr>
<tr>
<td>Bismuth*</td>
<td>Bismuth shells are packed in 10 round boxes @ $15.00 - $25.00/ 10 round box</td>
<td>Similar to lead</td>
<td>Limited world supply of bismuth</td>
<td>Bismuth is a byproduct of lead and gold mining. There are currently many uses, including: medicine (Pepto-Bismol), cosmetics, pigments, and shotgun shot. The addition of tin makes bismuth more malleable and reduces frangibility. Bismuth shot is safe to use in older firearms.</td>
</tr>
</tbody>
</table>

*Product reference within this table is not an endorsement by EPA.

* Approved by USFWS for migratory waterfowl hunting.

* Costs will vary from store to store and were valid at the time of manual development.
Summary of Lead Shot Alternatives – Continued†

<table>
<thead>
<tr>
<th>Shot Material</th>
<th>Approximate Cost per 25 Round Box</th>
<th>Ballistic Performance</th>
<th>Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel†</td>
<td>$8.00 - $12.95/box</td>
<td>In test performance by the Cooperative North American Shotgun Education Program (CONSEP) in hunting situations, no significant differences were found between lead and steel shot at reasonable distances. Lead is more effective at longer ranges.</td>
<td>Readily available from both domestic and imported sources.</td>
<td>Steel shot is about 33% lighter than lead. Therefore, the initial velocity must be increased so that downrange pellet energy remains similar. In hunting situations, larger, and therefore heavier, steel shot is used. Few shooting competitions allow steel shot at this point, but the number is increasing. While steel target loads are available, shooter perception that steel will adversely affect guns and scoring seems to be the limiting factor in acceptance of steel shot for target shooting. Steel shot will not damage newer guns, but may cause ring bulge in older guns if a very tight choke is used. This problem has been resolved in the newer guns with the use of screw-in chokes.</td>
</tr>
</tbody>
</table>

† Product reference within this table is not an endorsement by EPA.

* Approved by USFWS for migratory waterfowl hunting.

† Costs will vary from store to store and were valid at the time of manual development.
Summary of Lead Shot Alternatives – Continued

<table>
<thead>
<tr>
<th>Shot Material</th>
<th>Approximate Cost per 25 Round Box</th>
<th>Ballistic Performance</th>
<th>Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel* (cont.)</td>
<td></td>
<td></td>
<td></td>
<td>Another concern with steel shot is safety. Because steel is much less malleable than lead, steel shot is likely to ricochet if it strikes something hard. Lead shot, on the other hand, will deform and flatten. In Europe, steel shot is banned for hunting because it can become embedded in trees. The steel shot in trees cut for lumber can cause damage to sawmill equipment and raise concerns about worker safety. Although steel shot can be reloaded, components are not readily available.</td>
</tr>
<tr>
<td>Tungsten/Iron* 40% tungsten/ 60% iron</td>
<td>$62.50/box (tungsten/iron shots are packed in 10 round boxes @ $25.00/10 round box)</td>
<td>Preliminary reports indicate that tungsten/iron shot is as effective as lead shot. However, the amount of shot in each cartridge is significantly less than in typical lead cartridges or even steel cartridges. The density of tungsten/iron is 94% that of lead.</td>
<td>Readily available</td>
<td>The tungsten/iron shot currently available is harder than steel. It would, therefore, cause similar damage to older guns.</td>
</tr>
</tbody>
</table>

*Product reference within this table is not an endorsement by EPA.

* Approved by USFWS for migratory waterfowl hunting.

1 Costs will vary from store to store and were valid at the time of manual development.
Summary of Lead Shot Alternatives – Continued

<table>
<thead>
<tr>
<th>Shot Material</th>
<th>Approximate Cost per 25 Round Box</th>
<th>Ballistic Performance</th>
<th>Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten/polymer</td>
<td>Not available yet</td>
<td>Comparable to tungsten/iron</td>
<td>Currently not available</td>
<td>Two ammunition manufacturers are currently producing tungsten/polymer shot. This shot is more malleable than the tungsten/iron alloy and would, therefore, be less damaging to shotguns. A research and development company has developed a tungsten/polymer material as a substitute for lead in all its uses. According to this company, its tungsten/polymer can be formulated to be flexible or stiff, depending on the application. This material has been tested by the US Army in projectiles, but has not been used to manufacture shot. However, the company has initiated the process of applying to the USFWS for approval of this material as non-toxic shot.</td>
</tr>
</tbody>
</table>

1. Product reference within this table is not an endorsement by EPA.
2. Costs will vary from store to store and were valid at the time of manual development.
Summary of Lead Shot Alternatives – Continued†

<table>
<thead>
<tr>
<th>Shot Material</th>
<th>Approximate Cost per 25 Round Box†</th>
<th>Ballistic Performance</th>
<th>Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten/steel</td>
<td>Same as tungsten/iron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>Not available yet</td>
<td>Since tin is just being developed as an alternative to lead, performance information is not yet available. However, since the density of tin is less than steel, performance may be less effective than steel.</td>
<td>Currently not available</td>
<td>This material is just being developed as a lead shot alternative. However, it has similar problems as steel in that it is lighter than lead. The International Tin Research Institute in england is developing this product.</td>
</tr>
</tbody>
</table>

Other materials that are currently being experimented with as alternatives to lead are molybdenum and zinc. Not enough information is available to have included these alternatives in the above table.

† Product reference within this table is not an endorsement by EPA.
Summary of Lead Shot Alternatives -

Conclusions

The table clearly illustrates that a number of non-toxic alternatives to lead shot exist such as steel and tungsten as well as alloys and synthetic polymers. As demand for shot from these metals increases from migratory waterfowl hunters, it is anticipated that the costs will come down. However, alternatives currently cost approximately two to twenty times more than lead shot.

The ban on lead shot in hunting situations impacts target shooting. The alternatives to lead shot that are now being developed for or are already approved by the USFWS for migratory bird hunting could be considered for use by target shooters.

Although alternatives to lead shot are now being used by hunters, it is rare that the alternatives are used by target shooters. The limiting factors appear to be the expense and performance. All the alternatives to lead are much more expensive, some prohibitively. Unfortunately, the least expensive alternative, steel, is also perceived to be less effective.

To encourage use of lead shot alternatives, some ranges sponsor shooting competitions using lead-free ammunition, but these are rare. The use of steel or other alternative shot is a recommended BMP in established sporting clays areas at which reclamation of lead shot is difficult to impossible.

Note: Switching to non-toxic shot may create additional issues. For instance, steel has an increased risk of ricochet. Switching to steel may require additional safety features and/or operating procedures.
Appendix C: Sample Bullet Containment Devices

The bullet containment designs in this appendix are sample designs for the containment systems mentioned in this manual. Design systems may vary from different manufacturers. Reference to various individual bullet containment devices is included in this manual for informational purposes only. EPA does not endorse any particular bullet containment device, design, or product.

Sand Trap

Gel-Cor Bullet Trap™ (Provided by Super Trap, Inc.)

Escalator Trap (Adapted from: Bullet Trap Technologies, Action Target Educational Video Series)
BMP for Lead at Outdoor Shooting Ranges

Vertical Swirl Trap (Adapted from: Bullet Trap Feasibility Assessment and Implementation Plan: Technology Identification Final Report, U.S. Army Environmental Center, March 1996)

Pitt and Plate (Adapted from: Bullet Trap Feasibility Assessment and Implementation Plan: Technology Identification Final Report, U.S. Army Environmental Center, March 1996)
BMP for Lead at Outdoor Shooting Ranges

Steel Bullet Trap (Adapted from: Bullet Trap Technologies, Action Target Educational Video Series)

Lamella Trap (Adapted from: Bullet Trap Feasibility Assessment and Implementation Plan: Technology Identification Final Report, U.S. Army Environmental Center, March 1996)
Appendix D:
RCRA Regulatory Requirements and Interpretations

Timely separation of lead shot and bullets from soil at active ranges, recycling of the lead, and subsequent redeposition of the soil on the active range is exempt from RCRA regulation.

1. Reclaiming and Recycling Lead Shot

EPA's Office of Solid Waste issued guidance in 1997 indicating that lead shot, when recycled, is considered a scrap metal and is therefore exempt from RCRA regulation. A copy of the March 17, 1997 letter with this guidance is attached. Under the RCRA Subtitle C hazardous waste management regulations, lead shot would be considered scrap metal, which is exempt from hazardous waste regulations if it is recycled (see 40 CFR 261.6(a)(3)(ii)). Although storage of scrap metal being recycled is not affected by specific time limits such as the speculative accumulation provision (40 CFR 261.1(b)(8)), the scrap metal must legitimately be recycled to remain exempt under this provision. It should also be noted that lead shot may be subject to the authority of RCRA 7003, which addresses imminent hazards. However, use of best management practices is likely to prevent situations which would present an imminent hazard. Using such practices, together with following a clear, written policy governing the facility's recycling efforts, should also assist in assuring that the facility's practices can be demonstrated to be legitimate recycling.

2. Storage of Lead on Shooting Ranges Prior to Recycling

Some ranges have indicated that it may be desirable to store recovered lead shot and bullets on the range property for some periods of time prior to sale for recycling.

Provided that best management practices are followed in terms of storing and recycling the sorted lead, a range that follows such practices, and engages in legitimate recycling, should be able to store such material prior to recycling without RCRA regulatory controls (see discussion below). Best practices would suggest that the sorted lead, at a minimum, should not be exposed to the elements and should be managed so as to prevent releases to the environment. Best practices also indicate that the sorted lead should be stored in containers in good condition, regular inspections of the container condition should be conducted, and the records of inspections should be maintained and be readily available. Further, best practices also suggest that the sorted lead should be recycled in a timely manner and storage times should not exceed the time-frames or goals articulated in a clear, written policy.
3. Placement of Soil After Removal of Lead

For soil placed back on an active range after a BMP has been applied to remove the lead, the following regulatory approach has been followed. On February 12, 1997, EPA published the RCRA Subtitle C Military Munitions Rule in the Federal Register (62 Fed. Reg. 6621). The Military Munitions Rule considers range management to be a necessary part of the safe use of munitions for their intended purpose. Thus, the range clearance activity (recovery of lead shot and bullets) is an intrinsic part of the range operation. Therefore, the rule excludes range clearance activities (including the placement of soil back on the range) from RCRA Subtitle C regulation. Although the Military Munitions Rule did not apply to non-military ranges, EPA, in its response to comments on the proposed rule, clearly stated that “it felt that the ‘range clearance’ interpretation in the final Military Munitions Rule is consistent with the EPA’s interpretations for non-military ranges.” In addition, the EPA’s Director of the Office of Solid Waste sent the New York State Department of Environmental Conservation a letter dated April 29, 1997, confirming that the Military Munitions Rule range clearance principles apply equally to non-military ranges. A copy of the letter is attached.

4. Relocation of Backstop and Shotfall Zone Soil

Some ranges have indicated to the EPA that it may be desirable to transport and/or relocate a backstop in order to reorient or modify their range. This may occur when there is a need to reorient the range due to environmental concerns (e.g., shooting over water (wetland, stream, pond) or excessive runoff), alter the layout to improve shooter safety, or redesign to modify shooting conditions (e.g., adjusting number of shooting positions, increasing or decreasing target distance.) In some cases backstop material would not be moved off the range property, but to another area on the range property.

EPA’s position is that range backstop materials are part of the range and are not wastes when they are moved or relocated, as long as the range continues to be used as a range and the backstop materials continue to be used as backstop materials. Hence, backstop materials that are still in use are not subject to the RCRA hazardous waste management regulations and need not be tested for hazardous waste characteristics. However, removal of lead from backstop materials that are to be relocated or moved is a normal practice of good range management in that it extends the usable life of the materials and reduces the possibility of releases of lead into the environment. If lead removal does not occur before moving the backstop material, the lead will become more dispersed throughout the material during movement and will thus be more difficult to recover in future reclamation events.

As a range management practice, it is environmentally preferable to use soil that may already contain lead and is on an active portion of the range, which will therefore undergo regular lead reclamation in the future, than to leave such soil in place and construct a new backstop with lead-free soil. Records of all movements of berm and shotfall zone soils, along with corresponding site plans, should be maintained indefinitely, as they will be necessary in evaluating cleanup needs during subsequent construction or range closure.
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20460
March 17, 1997

Mr. Duncan Campbell
Environmental Protection Agency, Region V
RCRA Enforcement
77 West Jackson Boulevard
Chicago, Illinois 60604-3507

Dear Mr. Campbell:

Enclosed please find a memorandum on the regulatory status of lead shot, which includes a general discussion on the regulatory status of lead shot as scrap metal. I hope that this information is sufficient to address your specific concerns as they relate to the pile of lead shot at the Saxon Metals facility.

If you have any questions or would like to discuss this matter further, please contact me at (703) 308-8826.

Sincerely,
Jeffery S. Hannapel
Office of Solid Waste

Enclosure

To: Duncan Campbell, EPA Region V
From: Jeff Hannapel, EPA Office of Solid Waste
Date: March 13, 1997
Re: Regulatory Status of Lead Shot

Based on our conversations, it is my understanding that Saxon Metals received for recycling a shipment of approximately 30,000 pounds of lead shot from a commercial indoor shooting range. Smokeless gun powder is, presumably, commingled with the lead shot. The mixture appears to exhibit the ignitability characteristic of hazardous waste (as evidenced by the incident in which the material ignited when Saxon Metals was attempting to load it into the furnace with a front-end loader). You have asked our office to provide you with guidance on the regulatory status of the lead shot portion of the mixture, specifically whether it is considered a spent material or scrap metal.

The Agency has taken the position that the discharge of ammunition or lead shot does not constitute hazardous waste disposal because the Agency does not consider the rounds from the weapons to be “discarded.” As you know, discard is a necessary criterion to be met.
before a material can be considered a solid waste and subsequently a hazardous waste. (40 CFR §261.2(a).) The Agency's interpretation regarding discard is based on the fact that shooting is in the normal and expected use pattern of the manufactured product, i.e., the lead shot. Enclosed for your information is a September 6, 1988 letter from EPA to IDEM on this particular point.

In the federal regulations, the term, "scrap metal," is defined as "bits and pieces of metal parts (e.g., bars, turnings, rods, sheets, wire) or metal pieces that may be combined together with bolts or soldering (e.g., radiators, scrap automobiles, railroad box cars), which when worn or superfluous can be recycled." (40 C.F.R. §261.1.) In the Federal Register preamble for the final regulations on the definition of solid waste, EPA indicated that "scrap metal is defined as products made of metal that become worn out (or are off-specification) and are recycled to recover their metal content, or metal pieces that are generated from machine operations (i.e., turnings, stampings, etc.) which are recycled to recover metal." (50 Fed. Reg. 614, 624 (1985).) The lead shot portion of the Saxon Metals pile would be considered scrap metal pursuant to the regulatory definition of scrap metal.

EPA provided further clarification on the regulatory status of scrap metal in the Federal Register preamble to the definition of solid waste final regulations:

"[a]t proposal, scrap metal that was generated as a result of use by consumers (copper wire scrap, for example) was defined as a spent material. (This type of scrap is usually referred to as "obsolete scrap.") Scrap from metal processing, on the other hand (such as turnings from machining operations) was defined as a by-product. (It is usually called "prompt scrap.") Yet the scrap metal in both cases is physically identical (i.e., the composition and hazard of both by-product and spent scrap is essentially the same) and, when recycled is recycled in the same way - by being utilized for metal recovery (generally in a secondary smelting operation). In light of the physical similarity and identical means of recycling of prompt scrap and obsolete scrap, the Agency has determined that all scrap metal should be classified the same way for regulatory purposes. Rather than squeeze scrap metal into either the spent material or by-product category, we have placed it in its own category."

(50 Fed. Reg. at p. 624) Based on these regulatory passages, the lead shot portion of the pile would be considered scrap metal, and not a spent material. The lead shot is a product that is made of metal that can be recycled to recover metal content. Furthermore, the lead shot has not been "discarded" by virtue of its discharge at the shooting range, because the discharge is within the normal and expected use pattern of the manufactured product. Accordingly, lead shot would be considered scrap metal for regulatory purposes. Scrap metal is a solid waste, but it is exempt from the regulatory requirements of Subtitle C when it is recycled. (40 C.F.R. §261.6(a)(3)(ii).) As part of the Phase IV land disposal restrictions supplemental rulemaking (which was proposed January 25, 1996 and is expected to be finalized in April 1997), processed scrap metal and two categories of unprocessed scrap metal that is being recycled would be excluded from RCRA jurisdiction.
BMP for Lead at Outdoor Shooting Ranges

Please note that this discussion of the regulatory status is limited to the lead shot portion of the pile as you requested. To the extent that the entire pile exhibits the ignitability or reactive characteristic of hazardous waste, the mixture of materials would be considered hazardous waste and not scrap metal. The scrap metal designation for the lead shot would be applicable only to the extent that the lead shot could be segregated from the other materials in the pile.

I hope that this guidance on the regulatory status of lead shot recovered from shooting ranges provides you with the clarification that you needed. If you have any questions or would like to discuss this matter further, please contact me.
Mr. John P. Cahill
Acting Commissioner
State of New York
Department of Environmental Conservation
Albany, New York 12233-1010

Dear Mr. Cahill:

Thank you for your letter of April 3, 1997 to Administrator Browner requesting a clarification of the Environmental Protection Agency (EPA) Final Military Munitions Rule regarding the extension of its range clearance principles to non-military ranges. Although the final rule addresses only military ranges, we agree with your view that the range clearance principles apply equally to non-military ranges [see comment no. 5 on page 36 of the enclosed excerpt from the Military Munitions Final Rule Response to Comments Background Document].

We are aware of the State of New York’s active leadership role in the clean-up of private firing ranges. We appreciate your writing in support of the range clearance aspects of the final Military Munitions Rule and we will consider your suggestions that we issue broader guidance on the applicability of its principles to non-military ranges.

Sincerely yours,

Elizabeth Cotsworth, Acting Director
Office of Solid Waste

Enclosure
Appendix E:
Template for an Environmental Stewardship Plan for Management of Lead Shot/Bullets

Instructions

EPA encourages outdoor shooting ranges to adopt and implement the Best Management Practices (BMPs) found in this manual. To this end, it is recommended that ranges first prepare an Environmental Stewardship Plan (ESP or Plan), which gathers information about, and guides evaluation of, site specific conditions of each range. As such, the ESP assists in selection of appropriate BMPs.

This document serves as a template that may be used by sportsmen's clubs and shooting ranges in their preparation of an ESP. This template was adapted from Appendix C of the National Shooting Sports Foundation's manual, *Environmental Aspects of Construction and Management of Outdoor Shooting Ranges* (the NSSF manual.) This template is only a tool to assist in making ESP preparation easier and can, and in some cases should, be modified to incorporate specific information relative to your club and its ranges. It is intended to be used in conjunction with a full understanding of the NSSF, U.S. Environmental Protection Agency (EPA) and, for ranges in Florida, Florida Department of Environmental Protection (DEP) manuals for the safe management of lead at outdoor shooting ranges. This template is intended to encourage ranges to prepare ESPs and submit them to EPA or NSSF to obtain a Certificate of Recognition from EPA. In this regard, either the following template or the NSSF template is recommended for use in conjunction with EPA's Certificate of Recognition program.

An electronic copy of this template is available on EPA’s shooting range website (http://www.epa.gov/region2/leadshot) in several formats.

Disclaimer: This template does not serve as a substitute for understanding the concepts and techniques discussed in the EPA manual or other manuals. This template is not to be used as a substitute for consultation with scientists, engineers, attorneys, other professionals, or U.S. EPA.
Environmental Stewardship Plan for Management of Lead/Bullets at Outdoor Shooting Ranges

Club Name

Address
City/Town, State & Zip Code
Phone #:

Date
BMP for Lead at Outdoor Shooting Ranges

Table of Contents

- Introduction
 - Mission Statement
 - Purpose
 - Goal
 - Delete

- Site Assessment
 - Description of Ranges and Support Facilities
 - Existing Environmental Conditions
 - Trap and Skeet Fields
 - Sporting Clays Course
 - Rifle and Black Powder Range(s)
 - Outdoor Handgun Range(s)

- Trap and Skeet Fields
 - Action Plan
 - Potential Management Options
 - Selection of Management Options to be Implemented
 - Options Selected
 a) Management Actions
 b) Operational Actions
 c) Construction Actions
 - Plan Implementation
 - Schedule for Implementation
 - Responsibilities

- Rifle, Black Powder, and Outdoor Handgun Ranges
 - Action Plan
 - Potential Management Options
 - Selection of Management Options to be Implemented
 - Options Selected
 a) Management Actions
 b) Operational Actions
 c) Construction Actions
 - Plan Implementation
 - Schedule for Implementation
 - Responsibilities
BMP for Lead at Outdoor Shooting Ranges

Table of Contents (continued)

☐ **Sporting Clays Course**...
 • Action Plan...
 - Potential Management Options..
 - Selection of Management Options to be Implemented...........
 - Options Selected..
 a) Management Actions..
 b) Operational Actions..
 c) Construction Actions...
 • Plan Implementation...
 - Schedule for Implementation..
 - Responsibilities..

☐ **Measuring Success**...
 • Vegetation...
 • Soil and Runoff pH...
 • Erosion..

☐ **Plan Review and Revisions**...

Figures

 • Figure 1: Site Location Map
 • Figure 2: Facilities Diagram

(Additional figures, as appropriate)

Tables

 • Table 1:
 • Table 2:

Appendices

 • Appendix A:
 • Appendix B:

(Additional Appendices, as appropriate)
Introduction

The XYZ Club, Inc. is located at 123 X Road in Anytown, USA...

Mission Statement

The XYZ Club, Inc. is committed to...

- Purpose:

The Purpose of this Environmental Stewardship Plan (i.e., the Plan) is to:

- Identify potential environmental concerns that may exist;
- Identify, evaluate, and prioritize appropriate actions to manage lead shot and bullets safely, as well as identifying and addressing environmental concerns;
- List short- and long-term steps needed for implementation;
- Develop an implementation schedule;
- Identify ways to measure the Plan’s success;
- Evaluate annual progress made towards achieving environmental stewardship goals;
- etc.

- Goal – To minimize the release of lead into the environment.

Activities to Reach Goal:

Examples include:

▷ Avoid shooting over and into water and wetlands.
▷ Prevent off-site migration of lead through groundwater and surface water runoff.
▷ Conduct lead recovery.
▷ Discourage ingestion of lead by wildlife.
▷ Maintain soil pH between 6.5 and 8.5 in the shotfall zone.

Site Assessment

Description of Ranges and Support Facilities

The XYZ Club has an x position Trap Range, a y position Skeet Range, a z position Sporting Clays Course, and a q position Small Arms Range. These ranges are located in a rural setting and are oriented away from residential areas and surface water bodies.

[Briefly describe each range, its dimensions, orientation, vegetative cover, numbers of shooters and targets used per year, wildlife usage, etc.]

Existing Environmental Conditions

[Describe any known environmental conditions associated with the ranges. This might include type of soil, depth to groundwater, soil pH, drainage to surface water, unique animal or bird populations, etc. Refer to figures, tables, the results of surveys, inspections, professional opinions, etc.]
BMP for Lead at Outdoor Shooting Ranges

- Trap and Skeet Fields
- Sporting Clays Course
- Rifle and Black Powder Range(s)
- Outdoor Handgun Range(s)

Trap and Skeet Fields

Action Plan

[Briefly describe the management options selected.]

- Potentially Applicable Management Options

[See EPA or NSSF guidance manual for full listing of options]

Examples include:

- Vegetate sparse grass area of trap/skeet field.
- Reorient trap field to avoid lead shot entering wetlands.
- Reorient sporting clays stations to maximize the overlap of falling shot into the open field where it can be more easily recovered for recycling.
- Limit use of the trap/skeet range to only those stations that do not have wetland area within the shotfall zone.
- Apply lime to shotfall zones if soil test results indicate this would be beneficial.
- Prepare fields for lead reclamation.
- Get bids for lead reclamation project.
- Conduct lead reclamation within the trap/skeet shotfall zones.
- Change mowing frequency to closely mow grass in shotfall zones.
- Construct lean-tos at backstop berms.
- Construct a lime lined drainage swale for stormwater management.
- List additional Best Management Practices that may be appropriate to your club.

In addition to appropriate site-specific management options, the list should always include conducting lead reclamation within the berm for rifle and pistol ranges and conducting lead reclamation within the trap, skeet, and sporting clays shotfall zones.

- Selection of Management Options to be Implemented

 Option x:
 Option y:
 Option z:

[Describe why the above options were selected and the general roles of club officers, the membership, and outside consultants, as applicable, in implementation.]
In order to implement the options selected, the following actions are necessary.

a) Management Actions: [Examples include: assign personnel responsible for initiating, conducting, and completing the alternatives selected above.]

b) Operational Actions: [Examples include: collect soil samples for pH analysis, consult with USDA's Natural Resources Conservation Service and/or the county Cooperative Extension Service regarding best suited vegetative management recommendations.]

c) Construction Actions: [Examples include: do site preparation work, get bids, institute mowing and vegetative management recommendations, reorient shooting position as appropriate.]

Plan Implementation

- **Schedule for Implementation**

 Winter/Spring: [Examples include: pH survey, contact local officials for vegetation management recommendations, reorient shooting positions as appropriate, realign shooting positions as appropriate.]

 Summer/Fall: [Examples include: prepare site for reclamation project, apply lime/fertilizer/seed, get bids for berm lean-tos/reclamation. As a rule of thumb, 50 pounds of lime per 1,000 square feet should raise soil pH by 1 once the residual acidity is overcome.]

- **Responsibilities**

 [Specific duties (i.e., the trap/skeet chairman/chairmen will..., The club treasurer will..., The membership will provide the labor to...)]

Rifle, Black Powder, and Outdoor Handgun Range(s)

Action Plan

[Briefly describe the management options selected.]

Potentially Applicable Management Options

[See EPA or NSSF guidance manual for full listing of options]

Examples include:
- Culvert the stream through the shooting ranges.
- Vegetate the backstop berm(s) to minimize erosion.
- Construct a lime lined drainage swale for stormwater management.
- Apply lime to the berm and foreground if pH test determines it is necessary.
- Begin planning a lead reclamation project.
- Construct lean-tos at berms.
- List additional Best Management Practices that may be appropriate to your club.
Selection of Management Options to be Implemented

Option x:
Option y:
Option z:

[Describe why the above options were selected and the general roles of club officers, the membership, and outside consultants, as applicable, in implementation.]

In order to implement the options selected, the following actions are necessary.

a) Management Actions: [examples include: assign personnel responsible for initiating, conducting, and completing the alternatives selected above.]
b) Operational Actions: [examples include: collect soil samples for pH analysis, consult with USDA's Natural Resources Conservation Service and/or the county Service Forester regarding best suited vegetative management recommendations.]
c) Construction Actions: [examples include: do site preparation work, get bids, institute mowing and vegetative management recommendations, reorient shooting position as appropriate.]

Plan Implementation

- Schedule for Implementation

Winter/Spring: [examples include: pH survey, contact local officials for vegetation management recommendations, reorient shooting positions as appropriate, realign shooting positions as appropriate.]

Summer/Fall: [examples include: prepare site for reclamation project, apply lime/fertilizer/seed, get bids for berm lean-tos/reclamation.]

- Responsibilities

[Specific duties (i.e.: the small arms range chairman/chairmen will..., The club treasurer will..., The membership will provide the labor to...)]

Sporting Clays Course

Action Plan

- Potentially Applicable Management Options

[See EPA or NSSF guidance manual for full listing of options]

- Selection of Management Options to be Implemented

- Options Selected
Plan Implementation

- Schedule for Implementation
- Responsibilities

Measuring Success

By monitoring the success of the Plan, the club is best prepared to make whatever changes may be necessary to reinforce success and make the most of environmental stewardship efforts. Below are some examples of areas to monitor:

Lead Recovery

[Document the quantity (pounds) of lead recovered and recycled, along with the cost of conducting the activities.]

Vegetation

[The density of vegetation growth should be measured throughout the growing season, especially in areas of sparse growth where steps have been taken to increase the vegetative cover. This is can be done by taking periodic photographs (e.g., once a month) from the same places to document the impact of the Plan.]

Wildlife

[Keep a log of visual observations made regarding the frequency of range usage by the variety of species in your area.]

Soil and Runoff pH

[Track soil and runoff pH through semiannual monitoring and adjust the amount of lime applied to different areas of the range to maintain a pH level that will prevent lead from dissolving (i.e., a pH of 6.5-8.5).]

Erosion

[Again, keeping a photographic record of problem areas best prepares your club to document achievements and adjust the Plan as appropriate.]

Plan Review and Revisions

Review the Plan on an annual basis. Update the Plan as needed and schedule activities for subsequent years. Make recommendations for future club officers to consider when updating the Plan and designating future activities to be conducted (tell them what worked, what didn't work, and what still needs to be done.)
FIGURES

Figure 1
Facility diagrams

Figure 2
Resource maps (USGS topographic map, wetlands maps, soil survey maps, FEMA floodplain map, etc.)

Figure 3 (Optional)
Site photographs

Figure 4 (Optional)
Aerial photo of range and surrounding area

Appendix A
(Optional)

Appendix B
(Optional)
[Insert other figures as necessary to support the text]

Other figures may include an aerial photograph, and sketches of the Club property in general and/or specific ranges in particular.

Example:

Skeet Field Layout
[Insert Site Location Map Here]

Typically, a Site Location Map is cut from a USGS Topographic Map of your Club's area. The Club should be centered on the map. Indicate the property boundaries and layout of the range.
Appendix A

Information from USDA, Natural Resources Conservation Service [and/or county Cooperative Extension Service]

[concerning soil and vegetation management recommendations]
Appendix B (etc.)
[For other supporting documentation as needed.]
Notices

This document is intended for the exclusive use of elements of the Department of Energy (DOE), to include the National Nuclear Security Administration, their contractors, and other government agencies/individuals authorized to use DOE facilities. DOE disclaims any and all liability for personal injury or property damage due to use of this document in any context by any organization, group, or individual, other than during official government activities.

Local DOE management is responsible for the proper execution of firearms-related programs for DOE entities. Implementation of this document's provisions constitutes only one segment of a comprehensive firearms safety, training, and qualification program designed to ensure that armed DOE protective force personnel are able to discharge their duties safely, effectively, and professionally. Because firearms-related activities are inherently dangerous, proper use of any equipment, procedures, or techniques etc., identified herein can only reduce, not entirely eliminate, all risk. A complete safety analysis that accounts for all conditions associated with intended applications is required prior to the contents of this document being put into practice.
CERTIFICATION

This document contains the currently-approved firearms "Range Design Criteria" referred to in DOE O 473.3, Protection Program Operations.

Larry D. Wilcher
Director
Office of Security
Office of Health, Safety and Security

Date
6/4/2012
This page intentionally left blank.
TABLE OF CONTENTS

RANGE DESIGN CRITERIA

1. Purpose .. 1
2. Planning Factors .. 1
3. Planning Overview
 a. General Considerations .. 1
 b. Type of Range ... 1
 c. Site Selection Preparation ... 2
 d. Considerations ... 3
 e. Preliminary Design Stage .. 3
 f. Final Design Stage .. 3
4. Outdoor Range Design
 a. Site Selection ... 4
 b. Range Planning ... 4
 c. Surface Danger Zones ... 5
 d. Support Facilities .. 6
 e. Design Criteria .. 8
5. Indoor Range Design
 a. Use of Indoor Ranges .. 15
 b. Site Selection .. 15
 c. Range Planning ... 17
 d. Design Criteria ... 17
6. Live Fire Shoot House
 a. Introduction ... 27
 b. Site Selection ... 27
 c. Design and Layout .. 28
 d. Wall Construction .. 28
 e. Doors ... 29
 f. Ceiling or Roofs .. 29
 g. Floors .. 29
 h. Bullet Traps ... 30
 i. Elevated Observation Control Platform ... 30
ATTACHMENT 1 -- RANGE DESIGN FIGURES ..Attachment 1-1
This page intentionally left blank.
RANGE DESIGN CRITERIA

1. PURPOSE. This document contains design criteria for U.S. Department of Energy (DOE) live-fire ranges for use in planning new facilities and major rehabilitation of existing facilities. This document will be approved and maintained by the Office of Security, Office of Health, Safety and Security (HSS) as a stand-alone document on the HSS website: http://www.hss.doe.gov/SecPolicy/pfs.html.

2. PLANNING FACTORS. All applicable local, State, Federal, U.S. Environmental Protection Agency, Occupational Health and Safety Administration (OSHA), and National Environmental Policy Act requirements should be addressed and be reviewed annually (at least every 12 months) by the site to incorporate any requirements and/or changes that occur.

3. PLANNING OVERVIEW.
 a. General Considerations.
 (1) Live-fire range design should: (a) promote safe, efficient operation; (b) include provisions for ease of maintenance; and (c) be affordable to construct and maintain.
 (2) Live-fire ranges should be designed to prevent injury to personnel and to prevent property damage outside the range from misdirected or accidental firing and ricochets. They should also be designed to direct ricochets away from the firing line inside the range.
 (3) An open range may be established provided that enough distance and land area available to allow for surface danger zones (SDZs) appropriate for the weapons to be used. Lack of SDZs may require baffled ranges. Extreme weather conditions may necessitate indoor ranges.
 b. Type of Range.
 (1) Range requirements should be considered when determining the type and size of the range and the material to be used.
 (2) The range should be suitable for training and qualifications for all courses of fire used on the site as set forth in the HSS-approved Firearms Qualification Courses.
 (3) The range should be designed for shooting day and reduced-lighting DOE firearms courses, moving targets, multiple targets, and advanced shooting courses/activities (e.g., shooting at steel targets) that may be required by the site.
(4) When determining whether the facility will be an indoor, open outdoor, partially baffled, or fully baffled range, the decision-making process should include site weather conditions, available land, available funding, and environmental, safety, and health considerations. The following additional factors should be considered.

(a) How many shooters must be accommodated?

(b) Will emphasis be on training or competitive activities?

(c) What types of firearms and range of ammunition will be used?
 (See Table 1.)

(d) Will the facility be used exclusively by DOE or will it be open to other organizations?

(e) What special uses will be made of the facility; e.g., advanced training, special weapons, or explosives?

(f) What lighting will be required, and what lighting is desired?

(g) What administrative space will be needed?

(h) What types of target mechanisms will be used?

(i) Will spectator safety areas be needed?

(j) What types of acoustics will be needed?

(k) How will lead contamination be controlled?

(l) Where will bullet traps be needed?

(m) Where will firearms cleaning and maintenance be performed?

c. **Site Selection Preparation.** The site selected should accommodate the required facility. It should meet acceptable standards for safety and have sufficient space, access, and acceptable zoning and construction costs. Land acquisition costs, future land values, and possible restrictions should also be examined. To ensure the project is feasible the following data should be considered.

(1) **Documents.** Copies of specific site, environmental, and construction criteria; applicable mandated regulations from Federal, State, county, and local authorities; copies of ordinances, zoning regulations, soil conservation standards, health department requirements, and any other regulations that may pertain to the project should be obtained.
Range Design Criteria
June 2012

(2) **Alternate Sites.** Identify alternate sites, because one or more of the potential sites may be unsuitable or construction costs may be prohibitive.

(3) **Technical Data.** Gather technical data relevant to each site including zoning maps, aerial photographs, topographic maps, and onsite ground and aerial information.

d. **Considerations.** The criteria to be considered in this process are:

(1) environmental restrictions; e.g., Endangered Species Act, Wilderness Act, and air and water pollution criteria;

(2) access; e.g., is it adequate or should a roadway be constructed to the site;

(3) construction cost; e.g., berms, baffles, barriers, earth moving;

(4) other restrictive Federal or State statutes and local ordinances; and

(5) community growth, especially in areas where urban growth is rapid. Escalating property values may make it unwise to construct in a particular area.

e. **Preliminary Design Stage.**

(1) Prepare:

(a) a preliminary layout sketch of each site;

(b) a draft document, which should include specifications for applicable zoning, building codes, environmental, safety, and health considerations, and other pertinent restrictions;

(c) alternative preliminary site plans showing different range layouts;

(d) a planning cost estimate; and

(e) a risk analysis report.

(2) Submit all environmental, zoning and building permit applications for approval. Be prepared, via the draft document, to present and, if necessary, defend the proposal at public hearings before zoning boards, health officials, and other governmental bodies involved in issuing permits.

f. **Final Design Stage.**

(1) The preliminary site plans include a layout of the proposed range with its accompanying safety fan in a cross section and top view.
4. OUTDOOR RANGE DESIGN.

a. Site Selection.

(1) Outdoor range sites should be remote from other activities but accessible by road. SDZs should not extend across traveled roads, navigable waterways, railroads, or other areas.

(2) To protect against unauthorized access, SDZs should be controlled while firearms are being discharged. To prevent future encroachment, SDZs should be recorded on site maps.

(3) If other methods to control access to SDZs are not effective, then the zones should be fenced in. Natural barriers around the site; e.g., rivers, hills or a large drainage channel may be used to prevent encroachment and will ensure privacy. The best site is one with a natural backstop for projectiles to reduce the cost of constructing earth impact berms and to provide natural sound abatement.

(4) Outdoor ranges should be oriented to eliminate firing into the sun. The range should be oriented to the north or slightly to the northeast. The ideal direction is between due north and 25° northeast.

b. Range Planning.

(1) Firing into upward sloping land and land with natural backstops of hills or mountains is recommended.

(2) Firing platforms, access roads, and targets should be elevated above the flood level.

(3) The line of fire in rough terrain should be perpendicular to high ground. The line of fire on flat terrain should be free of knolls, ridges, and trees that reduce visibility.

(4) Known distance ranges should be as flat or evenly graded as possible. If the grade between the firing points and target does not exceed 2 percent, then the firing points may be below the target.

(5) Roads used for setting and servicing targets in impact areas and for maintenance of earth berm may be graded pathways. Roads in areas not subject to disturbance; e.g., vehicle parking areas, and roadways behind
firing lines or out of range of weapons, should be designed for anticipated vehicle weight and usage.

(6) The ground between the targets and firing line should be free of any hardened surface (smooth-surfaced walkways excepted) such as rocks or other ricochet-producing material.

(7) The surface may be sodded or planted with low-growing ground cover.

(8) The surface should be smooth, firm, and graded to drain away from the targets. A slight side-to-side grade of 1 percent to 2 percent should be provided for storm water runoff. For baffled ranges, the lateral slope should not exceed 2 percent because of the geometry of the baffle system.

(9) The overall size will be governed by the range distance and number of firing positions.

(10) Range distances from the firing line to the target are determined by the approved DOE qualification courses of fire for all weapons available for use by Protective Force (PF) personnel and by site-specific training courses of fire. The distances from the firing line to the target should be accurate to ±.01 percent. It is important that any inaccuracy in the firing line-to-target distance is a greater, rather than lesser, distance (e.g., 101 yards for a 100-yard range instead of 99 yards).

(11) Shooters should have secure footing.

c. Surface Danger Zones. SDZs should be established to contain all projectiles and debris caused by firing ammunition and explosives (see Table 1). SDZ dimensions are dictated by the types of ammunition, types of targets, and types of firing activities allowed on the range. A basic SDZ consists of three parts: impact area, ricochet area, and secondary danger area (Figure 1). Figures 2 through 6 illustrate the application of the basic parts in the design of SDZs for various kinds of range activities.

(1) The primary danger area established for the impact of all rounds extends 5° to either side of the left and right limits of fire and downrange to the maximum range of any ammunition to be used on the range.

(2) The ricochet area is 5° to either side of the impact area and extends downrange to the maximum range of any ammunition to be used on the range.

(3) The secondary danger area is that area paralleling, and 100 yards outside of, the outermost limits of the ricochet area and extending downrange to the maximum range of any ammunition to be used on the range.

4. Boundaries of SDZs must be posted with permanent signs warning persons of the danger of the live-fire range and prohibiting trespassing. The signs must be posted in a way that will ensure a person cannot enter the SDZ without seeing at least one legible sign (i.e., usually 200 yards distant or less).

5. Limit of fire markers, both external and internal, must be placed to denote right and left limits of fire. Where cross firing is to be conducted, internal limit markers must be emplaced to denote internal right or left limits of fire from specific firing positions.

6. Ranges may be located parallel to one another if in compliance with Figure 19 for separation.

7. When there is insufficient distance to lay out a new range with the required SDZ or utilize other ammunition with a maximum range that does not exceed the SDZ, engineered or administrative controls can be used to control firing on that range. Permission to deviate from established SDZ requirements must be granted by the DOE cognizant security authority and supported by a safety risk analysis.

8. Administrative controls such as use of the low-ready position or engineered controls such as muzzle traverse/elevation limiters can be used to control the firearm. Natural terrain such as a mountain or a hill provides an excellent backstop for firing. The terrain should be high enough to capture rounds fired at up to a maximum 15° muzzle elevation.

9. To change the size and shape of an SDZ, baffles may be installed. Partial and full baffle systems consist of the following components: overhead baffles, a canopy shield over firing points, bullet impact berm, and side berms, sidewalls, or side baffles. A fully baffled range must be constructed so all direct fire can be contained within the range (see Figures 7 and 8).

d. **Support Facilities.** Range planners should consider the site-specific need for the following range support facilities.

1. Targets.

2. Target storage.

4. Range control towers.

5. Toilets.

6. Range poles, banners, markers, and signs.
Range Design Criteria
June 2012

(7) Communication systems.
(8) Access and range roads.
(9) Parking areas.
(10) Potable water.
(11) Target maintenance.
(12) Ammunition storage.
(13) Power.
(14) Sewer.
(15) All other necessary utilities.

Table 1. Maximum Range of Small Arms Ammunition

<table>
<thead>
<tr>
<th>Caliber</th>
<th>Maximum range of small arms ammunition (distance in meters/yards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.22 long rifle</td>
<td>1400/1531</td>
</tr>
<tr>
<td>.38 revolver</td>
<td></td>
</tr>
<tr>
<td>Ball, M41</td>
<td>1600/1749</td>
</tr>
<tr>
<td>Ball PGU-12/8</td>
<td>1900/2077</td>
</tr>
<tr>
<td>.40 pistol</td>
<td></td>
</tr>
<tr>
<td>Ball</td>
<td>1783/1950</td>
</tr>
<tr>
<td>JHP</td>
<td>1908/2086</td>
</tr>
<tr>
<td>Frangible</td>
<td>1000/1093</td>
</tr>
<tr>
<td>.45 pistol</td>
<td></td>
</tr>
<tr>
<td>.45 submachine gun</td>
<td>1600/1749</td>
</tr>
<tr>
<td>.357 magnum</td>
<td>2160/2362</td>
</tr>
<tr>
<td>9mm pistol</td>
<td>1740/1902</td>
</tr>
<tr>
<td>9mm submachine gun</td>
<td>1920/2099</td>
</tr>
<tr>
<td>.44 magnum</td>
<td>2290/2504</td>
</tr>
<tr>
<td>.50 machine gun</td>
<td></td>
</tr>
<tr>
<td>Ball, M33</td>
<td>6500/7108</td>
</tr>
<tr>
<td>AP, M26</td>
<td>6100/6671</td>
</tr>
<tr>
<td>12 gauge shotgun, riot 00 buckshot</td>
<td>600/656</td>
</tr>
<tr>
<td>.30 rifle and machine gun</td>
<td></td>
</tr>
<tr>
<td>Ball, M23</td>
<td>3100/3390</td>
</tr>
<tr>
<td>AP, M2</td>
<td>4400/4811</td>
</tr>
<tr>
<td>.30 carbine</td>
<td>2300/2515</td>
</tr>
<tr>
<td>5.56mm rifle</td>
<td></td>
</tr>
<tr>
<td>Ball, M193</td>
<td>3100/3390</td>
</tr>
<tr>
<td>7.62mm rifle and machine gun</td>
<td></td>
</tr>
<tr>
<td>Ball, M80</td>
<td>4100/4483</td>
</tr>
<tr>
<td>Match, M118</td>
<td>4800/5249</td>
</tr>
<tr>
<td>40mm</td>
<td></td>
</tr>
<tr>
<td>M79</td>
<td>400/437</td>
</tr>
<tr>
<td>Mk-19 40mm</td>
<td>2200/2406</td>
</tr>
</tbody>
</table>
c. **Design Criteria.**

(1) **Firing Line Items.** Provide the following components:

(a) **Floor Surface.** The surface should be smooth, firm, and graded to drain away from the targets. A slight side-to-side grade of 1 percent to 2 percent should be provided for storm water runoff. Transverse firing line grading should match target line transverse grading. The distance between the firing line(s) must be sufficient to support the type of training conducted. Firing lanes must be clearly marked on the surface to match the targets. Depending on the number of personnel to be supported and the funds available, the following surfaces should be considered:

1. ground firmly compacted with mown grass;
2. sand or fine gravel;
3. wood decking of sufficient thickness and support to prevent movement; and
4. concrete topped with appropriate cushioning material.

(b) **Overhead Containment.** On partially and fully baffled ranges, a ballistic canopy (see Figure 9) should be provided over all locations where a weapon may be expected to be discharged (firing line, by definition). Figure 9 represents one construction approach, but the canopy must contain the direct fire effects of the most energetic round fired on the range. This canopy should begin at least 3 feet behind the firing line. General structural requirements may dictate more distance. The canopy should extend forward a minimum distance of 13 feet minimum, which will work geometrically with the first overhead baffle to prevent a weapon from firing directly out of the range (see Figures 16 and 17). The canopy should be constructed of ballistic material with sacrificial cladding as described below. Sound reduction ceiling waffles should be considered. Weather roofing is required above the ballistic material and it must slope sufficiently to drain.

(2) **Firing Point.** The depth of the firing point is determined by the shooting activity; e.g., rifle firing requires more depth than pistol firing.

(a) The minimum depth of the firing point is the area required for the shooter, shooter’s equipment, scorers, and range officers. For example, a pistol range might have a firing line approximately 6 to 10 feet deep, while a rifle range would have a firing line up to 20 feet deep. This variation is based on available space, type of
shooting, size of target frames and carriers, and the spacing of
target frames or carriers.

(b) For rifle ranges, each firing point should be 9 feet wide (see
Figure 10). Firing lanes for pistols and shotguns should be 5 feet
center to center (see Figure 11).

(3) **Ballistic Material.** The purpose of this material is to absorb, deflect, or
fragment projectiles. Material for baffles on partially and fully baffled
ranges is shown in Figures 12 and 18. Wood that is used should be of
middle grade exterior timber or plywood. Timber in contact with the
ground must be pressure-treated for this purpose. Avoid exposed
connectors if possible. Refer to Table 2, Thickness of Material for
Positive Protection Against the Caliber of Ammunition Listed, for the
thickness of various materials.

(4) **Sacrificial Cladding.** Provide ¾-inch thick plywood with a ¾-inch air gap
on any surfaces (baffles, wing walls, metal connectors, etc.) that are within
11 yards of the firing line to prevent back splatter.

(5) **Firing Line Cover Material.** The firing line should be covered to protect
the shooter and allow activities to be held regardless of the weather. On
ranges with several firing lines, the cover is generally installed at the
longest firing distance. The firing line covers described below are for
shelter only and should not be confused with the ballistic firing line
canopies required on baffled ranges. Material that can be used for firing
line covers includes wood, concrete, steel, and plastic. Most covers are
constructed from wood products and are a shed or gable roof design. In
some cases, corrugated metal or fiberglass roofing material can actually
increase sound levels at the firing line and in areas around the range.
Therefore, to reduce noise, corrugated metal or fiberglass roofing material
should not be used unless it is acoustically treated. The structure should
be designed to include the following:

(a) The shed roof should have a 6-inch cavity filled with fiberglass
insulation (or equivalent) and be enclosed on the bottom with
¾-inch plywood or insulation board. Although this will not
provide a completely effective sound barrier, sound waves will
strike and penetrate the inside layer of plywood, and the sound will
be reduced;

(b) A plywood shed roof should have a 6-inch hollow core enclosed
with a small grid mesh screen and a six-mil polymer barrier to
retain the insulation. The intervening space should be filled with
blown-in insulation to trap sound waves and reduce the drum effect
of an open roof; and
A gable roof has a large hollow area above the joists; however, additional sound damping materials should be installed to reduce the drum effect and the sound pressure level as they are reflected onto the firing line area. The underside of the roof surface will require a minimum of 4 inches of insulation to fill in between the rafters and a minimum of 3 inches of insulation above the ceiling and between the joists. This will reduce the drum effect caused when sound waves strike surface material (e.g., corrugated metal) and will absorb a portion of the reflected sound waves.

Surface Material. Positions should be hard-surfed (e.g., concrete, gravel, wood, asphalt, or sod).

(a) For ranges where prone shooting is conducted, gravel or similar materials may cause difficulty for the shooter. When the surface material is concrete or asphalt, shooting mats or padding will be required when the kneeling or prone positions are used.

(b) For ranges with multiple firing lines, hard-surfaced firing lines located downrange of another firing line should be recessed or shielded from bullet impact to avoid ricochets off exposed edges.

Landscaping. The site should be landscaped to provide for erosion control, noise abatement, maintenance, appearance, fire protection, and safety.

NOTE: Any landscaping will complicate the removal of lead in the berms, especially on impact surfaces, and will create higher maintenance costs.

(a) Berms should be planted with grass to prevent erosion. Ground cover is acceptable on existing berms that have been maintained and where erosion is not a problem.

(b) When grass is selected as a ground cover, it should be appropriate for the geographic area and should readily grow and provide good coverage. The degree of shading caused by overhead baffles will determine the type of grass for the range floor. Use grasses and cover for earth berms that will not be accessed by moving equipment so that natural growth heights will be acceptable. In areas where the soil is poor or extremely sandy, plants such as Bermuda grass, ice plant, or vine root can be used to control soil erosion.

(c) Heavy landscaping may be used to cut down on noise transmission. Plants and trees may be planted behind the firing position shelters to alleviate noise transmission problems.
Soundproofing the firing line structures should be considered in problem areas. Trees should be kept away from firing lines to allow range control officers to see all shooters.

(d) For windbreaks, trees may be planted along the length of the range with partial side berms or wing walls where strong prevailing crosswinds are problems to shooting accuracy.

(e) Densely planted rows of fast-growing, compact, and thorny shrubs may be planted below the trees at ranges with partial berms or wing walls to abate noise, prevent encroachment, and alleviate crosswind problems.

(8) **Target Line and Mechanisms.** Components must be as follows:

(a) The target line should be a minimum of 30 feet from the toe of the impact berm. The distance between targets must be the same as the distance between firing positions.

(b) Target line bases must match grading with the firing line. Mechanical target support bases must be protected from the direct line of fire. They may be buried flush with the ground or placed behind a protective wall. Note that a small raised earth berm at this location generates significant ricochet. The complexity of the mechanism will dictate the protection requirement. See Figure 13 for wall or trench protection of high cost target line mechanisms.

(c) Target supports can be made of steel angles and channels, PVC pipe or wood. Do not use metal parts within 33 feet of the firing line where direct fire strikes are anticipated. Discharging weapons close to metal surfaces is extremely dangerous. Present the smallest surface area that is structurally sound to the line of fire to minimize ricochet. Design the target holders for easy and inexpensive replacement. Portable, self-supporting 2- by 4-inch wood frames or 2-inch by 2-inch wood plank placed into buried PVC pipe work well on simple ranges. The full face of the target must be visible to the shooter.

(d) Turning targets and the display time are at the discretion of the user. Commercially available, electrically motorized target carrier and electronic scoring systems should be considered where economically feasible.

(c) On open ranges, a single target line with multiple firing lines is preferred. On partially or fully baffled ranges, in most instances, a single firing line with multiple target lines will produce the most cost-effective range because of the firing line canopy. An
Range Design Criteria
June 2012

extremely advanced target mechanism may be significantly more expensive than multiple canopies.

(9) Impact Structures. The structure varies depending on the type of range. Natural terrain such as a mountain, cliff, or steep hill may be incorporated into impact structures provided the completed structure complies with the minimum design requirements. Acceptable structures by range type are listed below.

(a) For open ranges, the top elevation of the earth impact berm should be 26 feet above the range surface for ranges 100 yards long or longer and 16 feet above the range surface for ranges 50 yards long or less. The impact berm should extend 50 yards beyond where the target line ends for 100-yard-long ranges or until joining with the side containment, if provided for ranges 50 yards long or less.

(b) The suggested elevation may be met by designing a combination of earth berm and vertical baffle (see Figure 14). The earth berm portion should have a top elevation of 16 feet above the surface of the range. The vertical baffle should be constructed of ballistic material and designed to withstand local seismic and wind loads. This combination arrangement would reduce the footprint and the amount of material in the earth berm.

(c) The preferred slope of the impact berm face is 1 to 1 or steeper. The steeper the slope, the more likely the berm is to absorb projectiles. The top should be 10 feet wide. The impact slope should be constructed with a 3-foot layer of easily filtered soil (to reclaim the lead projectiles) free of boulders, trees, rocks, stones, or other material that will cause ricochet. The rear slope should be appropriate to the native soil and maintenance requirements.

(d) For partially and fully baffled ranges, the top elevation of the impact structure will vary depending on the overhead baffle and impact structure arrangement. The impact structure for a partially baffled range can be: standard impact berm, bullet trap, or hybrid. For fully baffled ranges, the impact structure must be a bullet trap. In all instances, the impact structure must connect to the side containment. The top of the berm should be at an elevation 5 feet above the point where the highest line of direct fire can strike the berm.

(e) Outdoor baffled bullet stops can be constructed by placing the last vertical overhead baffle over the last target line and placing a sloped baffle to connect from the top of the earth berm to the back of the last vertical baffle. The bottom of this lower-sloped overhead baffle should be 2 feet above the highest point on the
berm where direct fire might strike. See Figure 15 for material and construction details. Rainfall runoff from the sloped baffle onto the berm must be considered. (See “Use of Bullet Traps and Steel Targets” for Shoot House bullet trap information.)

(10) **Side Containment.** For partially and fully baffled ranges (Figures 7 and 8), the top elevation of the side containment must geometrically mate with the overhead baffles to be high enough to prevent any direct fire from exiting the range. Full-side height containment should extend 3 feet to the rear of the firing line. Locate the side containment at least 10 feet outside of the centerline of the outermost firing lane. Construction may be in the following forms.

(a) **Earth Berm.** Construct earth berms to an inside slope of 1 to 1.5. If native soil characteristics will not produce a stable slope at this angle, provide geotechnical fabric reinforcement in the fill. The top width of the berm should be at least 10 feet. No rocks are permitted in the top 3 feet of the inside surface. Generally, earth berms cannot be used on partially or fully baffled ranges; however, earth berms are permissible if the firing range is small and the overhead baffle and berm geometry intercept ricochets.

(b) **Continuous Walls.** Construct continuous walls of ballistic material to withstand local wind and seismic loads. Provide sacrificial cladding to 13 feet forward of the firing line and 3 feet behind the firing line. Continuous walls are preferred for fully baffled ranges.

Table 2. Thickness of Material for Positive Protection Against the Caliber of Ammunition Listed

<table>
<thead>
<tr>
<th>Cover material</th>
<th>Caliber and thickness required to stop penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.56 mm</td>
</tr>
<tr>
<td>Concrete (5,000 lbf/in²)</td>
<td>5 inches</td>
</tr>
<tr>
<td>Gravel-filled concrete masonry units</td>
<td>8 inches</td>
</tr>
<tr>
<td>Broken stone</td>
<td>14 inches</td>
</tr>
<tr>
<td>Dry sand</td>
<td>16 inches</td>
</tr>
<tr>
<td>Wet sand</td>
<td>25 inches</td>
</tr>
<tr>
<td>Oak logs (wired)</td>
<td>28 inches</td>
</tr>
<tr>
<td>Earth</td>
<td>32 inches</td>
</tr>
<tr>
<td>Packed or tamped</td>
<td>35 inches</td>
</tr>
<tr>
<td>Undisturbed compact</td>
<td>38 inches</td>
</tr>
<tr>
<td>Freshly turned</td>
<td>44 inches</td>
</tr>
<tr>
<td>Plastic clay</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Figures are based on new material. Degradation may occur over time.

(c) **Wing Walls.** Wing walls (side baffles) are discontinuous side protection set at 45° to the line of fire. Locate the wing walls so that they are overlapped by 6 inches based on any line of fire that may strike them. Construct the wing walls of ballistic material to
withstand wind and seismic loads. Additionally, provide sacrificial cladding on wing walls closer than 30 feet to the firing line.

(d) **End Walls.** End walls may be constructed at the firing lane edge on the firing line in lieu of extending side containment 3 feet behind the firing line. Walls should be long enough to close off any line of sight between the end of the side containment and the rear 3 feet mark. The end walls should be constructed of ballistic material with sacrificial cladding extending from the canopy to the firing line surface.

(11) **Overhead Baffles.** Overhead baffles must be located so that no direct fire can exit the range from any firing position. The first overhead baffle must be geometrically coordinated with the firing line ballistic canopy (see Figure 9). The elevation of the top of each succeeding baffle should be 6 inches higher than a line of fire that just clears beneath each preceding baffle (see Figure 16). Overhead baffles should be the same height and spaced apart down range to achieve the required geometry (see Figure 17). The last baffle should be placed so the line of fire will strike the impact structure no higher than 5 feet below the top elevation of the structure. On a fully baffled range, the last overhead baffle must be over the last target line.

(a) On partially baffled ranges, overhead baffles must extend laterally to within 1 foot of the side containment. On fully baffled ranges, the overhead baffle must tie into the side containment.

(b) The vertical dimension of an overhead baffle when it is vertical varies with the number and spacing of the baffles. Normally, the height is between 5 and 8 feet when considering structural support size and costs.

(c) The baffles must be constructed of ballistic material. Baffles within 11 yards of the firing line should be covered with sacrificial cladding. See Figures 12 and 18 for possible configurations.

(d) Space the structural columns as far apart laterally as possible to open firing lanes. If possible, do not construct columns within the range. Design columns or beams to withstand local wind and seismic loads, and provide protective steel plate on the faces of the columns exposed to the firing line in accordance with Figures 12 and 18. Provide sacrificial cladding if the column is within 10 yards of the firing line. Overhead baffles may be placed on a flatter slope and overlapped to function as firing line canopies if multiple firing lines are to be used (see Figure 17). This arrangement is cost-effective for baffled combat lanes.
5. **INDOOR RANGE DESIGN.**

a. **Use of Indoor Ranges.**

(1) Indoor ranges must be designed so projectiles cannot penetrate the walls, floor or ceiling, and ricochets or back splatter cannot harm range users. Considerations should be made for cleaning of all surfaces and handling of hazardous wastes.

(2) Lead exposure requirements must be reviewed for applicability.

b. **Site Selection.**

(1) **Walls and Partitions.** Indoor ranges must incorporate walls and partitions capable of stopping all projectiles fired on the range by containing or redirecting bullets to the backstop.

(2) **Existing Buildings.** If there are existing drawings of the facility, copies should be obtained from the original owner, architect, engineer, builder, or building permit. If original drawings of the building are not available, a sketch can be made of each floor of the building with a special emphasis on the load-bearing walls. The following considerations should be used when making the initial evaluation of an existing building.

 (a) **General Construction.** Buildings constructed of wood products should be avoided. Modifications to reinforce the structure to support metal backstops or to reduce fire hazards may not be cost-effective.

 (b) **Exterior Walls.** The type of exterior wall construction (e.g., masonry, wood, concrete, metal, combination, other) should be identified. Masonry buildings should be given primary consideration, especially those constructed on concrete slabs.

 (c) **Floors, Walls, and Ceilings.** Floors, walls, and ceilings must be able to contain the sound in addition to the bullet fired.

 1. The ideal wall is made of poured concrete a minimum of 6 inches thick.

 2. To aid in range cleaning, concrete floors should be finished so they have a nonporous surface.

 3. Ceilings should be 8 feet high and enclosed to reduce air turbulence created by ventilation systems.

 4. Evaluate the structural support designs of older buildings for their ability to withstand new loading. Original design
considerations usually do not allow for installing heavy backstops and other range equipment.

5 To decide if modifications are necessary, slab buildings must be analyzed carefully to determine the capacity for floor loading. If there are no floor drains and it is economically feasible, modifications should also include adding one or more floor drains.

6 Ceiling joists may require strengthening to support baffles and shielding material.

(d) **Electrical.** Electrical needs may require the installation of heavy-duty wiring both internally and externally to accommodate the added power needs of range ventilation, heating, lighting, and target-carrier mechanisms.

(e) **Plumbing.** Plumbing does not usually require major modifications; however, heavy metals may be prohibited from area wastewater treatment collection systems. Therefore, an approved filtration system may be necessary for disposal of hazardous waste material; e.g., lead.

(3) **Precast Buildings.**

(a) Precast concrete companies can provide complete precast buildings (job site-delivered) if engineering specifications for steel placement are provided on a set of plans (drawings) for the proposed building.

(b) Precast assembly allows for installation of a roof design more suitable for an indoor range. Gabled or hip roof designs should not be used.

(c) Hollow, precast concrete panels provide an option to bar joists, eliminating bullet ricochet or splatter. A flat bar joist design is the recommended alternative to hollow, precast concrete panels.

(d) The flat roof design also provides support for heating, ventilating, and air conditioning (HVAC) equipment outside of the range, which saves space and reduces cost.

(4) **New Construction.** New indoor construction projects require the same guidelines as existing buildings; however, they offer the advantage of building a structure specifically for use as an indoor shooting range.
c. **Range Planning.** Design work for ventilation, wall structures, floors, ceiling, acoustics, backstops, and lighting will depend on how the range will be used.

(1) A determination for the type of building required includes the following considerations.

(a) Can the range be built in an existing building or is a new one required?

(b) How large should it be?

(c) How many shooters will it be expected to serve?

(d) Will it be used for competition?

(e) Should space be allowed for classrooms?

(f) How much will the facility cost?

(2) The planning process should include:

(a) obtaining ordinances, zoning regulations, building codes, soil conservation regulations and other information pertaining to legal requirements;

(b) for evaluation, identifying a site for a new building or several existing buildings that may have the suitable design characteristics; and

(e) gathering other technical information relevant to the project. This information includes zoning requirements, onsite information, and range design criteria. Local zoning codes or health department regulations normally will provide answers or solutions on how the project is to be handled.

d. **Design Criteria.** Based on the site selected, type of shooting, number of users, and site layout, the next step is to design the facility by preparing detailed drawings showing specifications and necessary dimensions. The four main considerations for indoor ranges are shooter needs, type of shooting activity, number of firing points, and number of users. Special consideration should be given to ventilation, lighting, safety baffles, and backstop design. The following standard and optional features for indoor ranges should be considered.

(1) **Backstops and Outdoor Baffled Bullet Stops.** See “Use of Bullet Traps and Steel Targets” for Shoot House bullet trap information.
The design of a backstop or baffled bullet stop is a contributing factor to the service life of the unit. Steel should be installed according to the type of ammunition to be used and to proven angle configurations.

The design criteria should be based on the planned use of the facility. Metal plates selected for use in a backstop or baffled bullet stops must resist repeated stress according to the degree of stress applied. Necessary characteristics are resistance to abrasion, resistance to penetration, surface hardness, thickness, and alloyed strength to resist metal fatigue.

The main backstop is generally a fabricated steel plate or series of plates used to stop bullets fired on a range. Backstop configurations and plate thickness will change according to type of shooting activity.

Steel backstops with sand or water pits are common; however, a few indoor ranges use earthen or sand backstops.

CAUTION: Earthen or sand-filled backstops are not recommended because they can create health hazards for maintenance workers from silica and lead dust. They also cause excessive wear on ventilation fans.

Backstops must extend from side to side and from ceiling to floor to protect the end of the range completely from penetration by direct bullet strike and prevent ricochets, back splatter, and splatter erosion of side walls.

Four basic backstop designs are used for indoor ranges: Venetian blind, escalator, Lead-a-lator®, and the angled backstop (45°) back plate. Other backstop designs exist and should be researched for applicable use.

1. **Venetian Blind Backstop.** Requires less space, but without proper installation and regular maintenance it can cause back splatter problems from exposed edges of each main segment of the backstop. Keeping the exposed edges ground to original specifications is time-consuming, difficult, and requires skilled personnel.

 a. To control back splatter, a curtain should be hung in front of the backstop. Tests have been conducted on materials including canvas, burlap, cardboard, insulation board, and synthetic rubber. Properly installed, these materials effectively stop back
splatter. Walls using insulation board or a synthetic rubber curtain are best.

b The main advantage of the venetian blind backstop is minimal space requirements. While an angled plate or an escalator will use 14 feet of space, the venetian blind uses only 5 feet.

2 Escalator Backstop. Sets up with flat steel plates laid out on a framework sloping away from the shooter. Between each series of plates, an offset allows a bullet sliding down the facing surface to drop into a hidden tray for easy cleanup. At the top or back of the backstop, a swirl chamber is provided to trap the bullets or bullet fragments as they exit the backstop surface. Once the bullet’s flight ends in a spin-out chamber, the bullet or pieces fall into a cleanup tray.

3 Lead-a-lator®. A variation of the escalator-type backstop that uses a curved instead of flat piece of steel. The surface is concave and operates so that a bullet will follow the contour of the surface into a dry lead spinout chamber where it is trapped.

4 Angled Backstop (or 45° Inclined Plates). Uses a sand or water trap and has been the traditional alternative for indoor ranges.

a The angle of the plate should never exceed 45° from the ground. The 45° plate and pit backstop is relatively inexpensive, but there are several disadvantages. Sand traps require frequent cleaning to remove bullet fragments. Cleaning operations require workers to wear high-efficiency particulate air (HEPA) filter masks if material is removed dry. It is best to dampen the sand trap material before and during cleaning operations to eliminate dust. To maintain a healthier internal environment, frequent removal, disposal, and replacement of lead-laden sand is required. The surface should be continually raked to keep the sand level and to guard against splatter as lead buildup occurs.

b The cleaning operations are easier when a water trap is used. However, a water trap requires chlorine and other chemicals to retard algae growth and antifreeze in colder months to prevent freezing.
Range Design Criteria
June 2012

Installing a water pit requires a different approach to foundations and footings, especially in areas affected by earthquakes or freezing.

(2) **General Range Cleaning.** Both dry and wet methods can be used to clean the range. The method selected depends on the frequency of use. The wet method is preferred when floor drains are available, and keeping materials wet during cleaning operations reduces or eliminates release of microscopic dust particles. When dry methods must be used, workers must use the appropriate personal protective equipment (PPE) that has been established by local industrial hygiene personnel. After cleaning operations are complete, workers must shower and have work clothing laundered.

(3) **Backstop Steel Plate Specifications.**

(a) Steel plates supported by concrete or masonry should be anchored by expansion bolts or toggle bolts, as suitable for construction, with flush countersunk heads not more than 12 inches on center of all edges of each plate. Joints and edge lines should be backed with continuous ½-inch thick plate no less than 4 inches wide. Bolts should pierce both the facing and back plates. Expansion bolts should penetrate concrete not less than 2 inches. Steel plates must have milled edges at all joints.

(b) Joints must be butted flush and smooth. After the plates are erected, they must not have any buckles or waves. Exposed edges must be beveled at 42° to a fillet approximately ½-inch thick. There must be no horizontal joints in any steel plate work.

(c) Welding must meet the American Welding Society code for welding in building construction. Steel plates joined at, and supported on, structural steel supports must be spot-welded to steel supports not more than 6 inches on center.

(4) **Baffles, Deflectors, and Shields.** Baffles on indoor ranges protect lighting fixtures, HVAC ducts, ceilings, and target carrier apparatus. Baffles are designed to protect against the occasional errant bullet but not for repeated bullet strikes.

(a) To cover or protect vulnerable ceiling areas or range fixtures, baffles must extend the entire width of the range and downward. Spacing of baffles on a 50 to 75 feet range depends on the ceiling design. Range distance (firing line to target line) and height are factors. Ceilings must be impenetrable.
(b) Baffles or deflector plates must be used when modifying an existing building, especially in a building constructed of wood. This will prevent bullets from escaping or penetrating. Baffles should be a minimum of 10-gauge steel covered with a minimum of 1 inch of soft wood to prevent back splatter. The wood traps the projectile, whereas bare steel redirects it downward into the range area. A wood surface must be applied to overhead baffles, because ranges with untreated baffles usually show significant damage to concrete floors and often complete penetration through wood floors.

(c) Baffles should be installed at a 25° angle as measured from the horizontal plane of the ceiling. The baffle size and placement depends on what surface areas require protection. For example, ceiling baffles are wider than side baffles.

(d) Unlike baffles, deflectors are installed vertically and horizontally to redirect wide-angle shots into the backstop area. Deflector shields protect pilasters, leading edges of sand traps, bottom edges of backstops, doorways, windows, ventilation registers along the wall, etc. Deflectors are not covered with wood generally, but may be. These devices are also installed at a 25° angle either to the wall surface or floor.

(e) To protect ceiling areas, special impenetrable shields are installed above the firing line, especially in wood frame buildings.

1. Shields should extend the entire width of the range and 12 feet forward of the firing line. Floor shields may be required on wood floors.

2. Shields must be constructed from metal sheets according to planned use. For example, 10-gauge steel covered with a minimum of 1 inch of soft wood is effective in stopping most pistol calibers.

(5) **Floors, Walls, and Ceilings.** Indoor range facility floors, walls, and ceilings must be impenetrable; therefore, an existing building must have a structural analysis to determine loading factors that may exceed original design specifications. Wooden buildings may require modifications to support the increased weight. Specifications for new construction call for either poured-in-place concrete, pre-cast concrete, or dense masonry block. Solid cinder block should be used in place of hollow-core block. Specifications for modifying existing buildings call for adding additional materials to prevent bullet escape, which can be done with wood and steel laminated shields. Laminated shields can be constructed onsite by placing sheet-steel or steel plates between two sheets of \(\frac{3}{4} \)-inch plywood. While
this method is more expensive than the extended booth design, it allows for an open firing line and better visibility for the range officer. Walls should be treated beginning 3 feet to the rear of, and extending forward of, the firing line until all vulnerable surfaces are protected. Acoustical material should be applied to the surfaces to aid in sound control.

(a) **Floors.** The range floor should be constructed by using a single pour and a fine, uniform-aggregate mix of concrete. Reinforcement should be No. 4 steel rods placed 12 inches on center along with 6- by 6-inch 8/8-gauge welded wire fabric. This may vary according to soil conditions. Very large floor areas may require two or more pours with expansion joints between each slab.

1 The floor should be designed to slope down toward the target line, beginning at the firing line, ¼-inch per foot.

2 The floor should be no less than 4 inches thick.

3 Floor size is governed by design. Larger size will result in higher costs for ventilation, lighting, heating, and overall building design. The decisions should be based on expected number of users versus overall cost.

(b) **Floor Guards.** Floor guards are provided to protect leading edges or protrusions; e.g., drains, traps or other protrusions from the floor area. Floor guards are designed to redirect errant bullets into the backstop area, which minimizes range damage.

1 Floor guards are constructed from 10-gauge steel and may be covered with wood.

2 Floor guards are installed horizontally along the floor surface parallel to the firing line.

3 Floor guards typically slope away from the firing line at a 25° angle to the horizontal.

4 Floor guards should extend only as high as necessary to protect exposed surfaces.

(c) **Floor Drains.** Floor drains should be constructed of cast iron soil pipe. The drain pipe should be attached to a lateral drain located 1 foot forward of the backstop floor guard. The drain pipe must lead to a filtration system approved by the cognizant environmental, safety, and health organization on the site.
(d) **Walls.** Poured concrete or masonry is preferred for wall construction, but wood may be used. Wall thickness must conform to acceptable engineering standards and comply with Federal, State, county and local zoning codes. Usually, no less than 3-inch thick, reinforced walls should be constructed to prevent the exit of any projectiles.

NOTE: This specification usually requires the use of steel or similar material where wooden walls are used. The size depends on building design, geological conditions, and climate. Size includes the height, thickness, and length of the running wall.

(e) **Ceiling.** Ceiling material should reduce sound, protect lighting devices, reflect light and be impenetrable. Typically, ceilings include 10-gauge steel baffles, 2- by 4-feet white acoustic panels, and clear-light panels.

1. The ceiling should be a minimum of 8 feet above the floor level and have an acoustically treated, smooth surface to allow for positive air movement downrange.

2. Baffles to protect adjoining areas should be above a false ceiling or designed into the roof/ceiling structure.

(6) **Shooting Booths.** Commercial or locally built shooting booths may be desirable on pistol ranges; however, they are not recommended for rifle ranges. Shooting booth panels can provide an impenetrable barrier between shooters, reduce sound levels, restrict the travel of brass, and act as a spray shield when revolvers are used.

(a) Shooting booths should be omitted for ranges that use only rifles.

(b) A shooting booth should never extend more than 18 inches behind the firing line because greater extension may obstruct the range control officer’s visibility.

(c) Bullets fired from any firearm used on the range must not be able to penetrate booth panels. The booth panel must be able to withstand the impact of a bullet fired at any angle to the surface and at point-blank range.

(d) Design criteria for the construction of booth panels are as follows:

1. Cover the 10-gauge steel plate with a nominal 2 inches of soft wood. In a series of tests using 10-gauge steel plate, firing all lead bullets at right angles, the plate covered with a nominal 2 inches of soft wood withstood direct hits from
all standard pistol calibers up to, and including, .44 caliber magnum;

2. Use special acoustical materials to ensure that panels reduce muzzle blast effects on all shooters and range personnel;

3. Ensure that panels do not restrict airflow;

4. Ensure that panels do not restrict the range officer’s visibility of the firing line; and

5. Construct panels so they extend from the floor to a minimum height of 6 feet. Panels should be ceiling height.

(7) **Target Carriers and Turning Mechanisms.** An indoor range can be operated more efficiently and safely by installing a target transport system. This system may be a simple, hand-made device or a completely automatic, electrically powered system. Either one will enhance safety by eliminating the need to walk downrange to replace targets. Target carrier systems speed up range operations. A turning target mechanism is available that faces the target parallel to the line of sight and then turns the target 90º to the line of sight to begin the stated time period. The target carriers should position the targets in the approximate center of the backstop.

(8) **Control Booth.** Range control booths must allow for maximum visibility and provide for easy access into and out of the range and ready area. The control booth should provide seclusion from and immediate access to the range environment. This design protects the range officer from frequent exposure to high sound levels and lead emissions.

(9) **Communications.** A communications system capable of relaying range commands distinct and separate from the sounds generated by shooting activities is required. Communications systems must account for shooters who wear two pairs of hearing protectors and persons who have substantial hearing loss.

(10) **Ventilation and Filtering Systems.** This section deals with the design or redesign of ventilation systems for indoor firing ranges. Administrative or engineering controls must be instituted to prevent shooters from being exposed to airborne lead levels exceeding acceptable limits. Administrative controls are used either when engineering controls fail to reduce exposure or when range use exceeds HVAC system specifications. Administrative controls are especially applicable to reducing risks on existing ranges.
(a) Administrative controls used to reduce exposure levels on an indoor range must be rigidly followed and enforced, and compliance must be recorded in a log book for purposes of analysis and reference.

(b) The following administrative controls are provided and must be used where individuals are frequently exposed to airborne lead.

1. Provide range maintenance personnel with appropriate PPE; e.g., safety glasses and respirators.

2. Provide proper HEPA filter cleaning equipment. The equipment must be able to remove accumulated lead dust from floors, walls, and ledges and must include attachments capable of removing lead-laden sand from the backstop area.

(c) A ventilation system must be installed that will provide clean air in the user's breathing zone to reduce exposure to potentially dangerous materials to safe levels.

(d) Adopt administrative controls that monitor and control exposure time for a given user and/or assigned range personnel.

(11) Lighting.

(a) A visually safe facility should be free of excessive glare and major differences in light levels. Therefore, floors and ceilings should be designed to provide light reflection. In the event of a power outage, battery-powered emergency lighting must be provided for emergency exits.

(b) Rheostat-controlled lighting fixtures, which can reproduce near-daylight and low-light conditions, are best suited for indoor ranges. Range lighting involves three systems: general lighting, local lighting, and semi-direct lighting.

1. General lighting provides uniform light levels over the entire range area and adjoining areas and is usually installed in a symmetrical arrangement to blend with the architecture.

2. Local lighting supplements general lighting along the firing line to provide better visibility for those tasks associated with the loading and firing of firearms.

3. Semi-direct lighting distribution directs 60 to 90 percent of the lighting on the target with a small upward component to
reflect from the ceiling and walls to soften shadows and generally improve range brightness. When ceilings are white, lighting fixtures mounted too close together create excessive glare.

(c) Lamp specifications for general lighting must be adjustable to provide 0.2 to 50 foot-candles of luminance measured at a point 7 yards from the target line. Local lighting should produce 0.2 to 60 foot-candles of luminance on the firing line. Semi-direct lighting on the targets should achieve 0.2 to 100 foot-candles of luminance. Glare should be reduced or eliminated by incorporating pastel colors in the interior design.

(d) Lighting designs should also seek to balance the color of light emissions. For example, most fluorescent fixtures produce high levels of blue, which alone are not suitable for indoor ranges. If fluorescent fixtures are used, green tubes or other light sources should be installed to balance the colors.

(12) **Plumbing.** Plumbing requirements specify that there must be a fresh water supply for personal hygiene and for range cleaning chores. There also must be a waste removal system for normal waste material and material removed from the range. An approved filtration system must be provided for range cleaning waste. Floor drains should be connected to this alternate waste system. Restrooms, showers, and sinks should be connected to a regular sewer system.

(13) **Sound Control.** Sound control on indoor ranges includes two distinct components: airborne and structure-borne sound. For airborne sound, all leaks into outer areas should be sealed, which includes airtight insulation around doors, windows, HVAC ducts, walls, and ceilings. Structure-borne sound reduction is necessary to protect adjoining, occupied rooms. Acoustical material should be applied to walls, HVAC ducts, floor, and ceiling areas.

(14) **Range Control.** Range control provides rules and supervision that encourage safe and proper use of a range. Safety devices control the physical use of an indoor range and may include warning lights, alarm bells, switch locations, etc. For example, an indoor range with a door in the downrange area should be equipped with an alarm. The door could also be secured by a mortise lock or barred from within but must remain a fire exit. Fire codes generally prohibit bars on doors that would delay escape from a building. Emergency personnel must be able to access the doors. Any door that can be accessed from the outside must be marked with warning devices to indicate when the range is in use. When installing doors on indoor ranges, refer to Life Safety Code National Fire Protection Association (NFPA) 101.
(15) **Target Carriers.** Target carriers are used for the convenience of shooters to allow them to continue shooting without delay when target changes are necessary. For health considerations, target carriers keep shooters out of the high lead concentration areas and safely behind the firing line.

(16) **Heaters.** Protected heating units should be installed behind and above the firing position to provide a comfort zone for shooters.

(17) **Gun Racks.** Gun racks should be mounted behind the firing positions as an additional safety feature to reduce gun handling and to keep the range areas orderly. Appropriate material should be used to construct the gun racks, and the design must correspond to the weapons being used.

6. **LIVE FIRE SHOOT HOUSE.**

 a. **Introduction.**

 (1) A live fire shoot house (LFSH) is intended for use in advanced tactical training for Security Police Officers. Use of this facility includes individual tactics or Special Response Team force option training. All LFSHs must have an elevated observation control platform (EOCP). The following sections illustrate recognized construction methods for LFSHs. However, they do not eliminate the requirement for sound professional engineering design and validation.

 (2) Administrative controls not directly related to design and construction must be in place during facility use. The administrative controls and engineering design allow for a reduction in physical barriers that prevent rounds from escaping the facility. Designed barriers must prevent a round fired with a vertical upward error of 15° from escaping the facility.

 b. **Site Selection.**

 (1) Site selection for an LFSH is similar to that for any range facility. Terrain features, noise, and availability of utilities and access roads must be considered, as already discussed in previous sections for indoor and outdoor ranges. The LFSH should be placed adjacent to other range facilities whenever possible so that it may utilize the same support facilities, access roads, etc.

 (2) Facility design, target and shooter placement, and other administrative controls minimize the possibility of rounds being fired over the top of the walls and leaving the structure and mitigate the need for an SDZ outside the confines of the LFSH proper.
c. Design and Layout.

(1) The interior layout of the facility is based on the mission and training requirements of the site. Facility design should incorporate a wide variety of room configurations. Some of the room configurations that should be considered are: multiple floors, an L-shaped room, stairwells, rooms within a room, hallways, and closets.

(2) The floor plan design should accommodate the movement of target systems, bullet traps, and other equipment into and out of the LFSH.

(3) Exposure to airborne contaminants for a fully enclosed LFSH must be controlled by adequate ventilation. The lighting requirements are similar to those for indoor ranges.

d. Wall Construction.

(1) Wall Height. Exterior walls of the LFSH must be designed to absorb the most energetic projectile identified for use within the facility. Wall height must be a minimum of 8 feet. The wall height should allow a maximum error angle of 15° from horizontal standing shooting distance from the target and still enable a projectile to be contained by the wall, which can be described by the following equation: Wall Height is equal to the muzzle height plus 0.27 (tangent 15°) times the target distance. The following table assumes a muzzle height of 5 feet.

<table>
<thead>
<tr>
<th>Distance from Muzzle to Ballistic Wall (Feet)</th>
<th>Wall Height (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11' 1"</td>
<td>8' 0"</td>
</tr>
<tr>
<td>13' 3"</td>
<td>8' 6"</td>
</tr>
<tr>
<td>14' 10"</td>
<td>9' 0"</td>
</tr>
<tr>
<td>17' 0"</td>
<td>9' 6"</td>
</tr>
<tr>
<td>18' 6"</td>
<td>10' 0"</td>
</tr>
<tr>
<td>20' 9"</td>
<td>10' 6"</td>
</tr>
<tr>
<td>22' 2"</td>
<td>11' 0"</td>
</tr>
<tr>
<td>24' 5"</td>
<td>11' 6"</td>
</tr>
<tr>
<td>25' 11"</td>
<td>12' 0"</td>
</tr>
</tbody>
</table>

If the distance from muzzle to ballistic wall exceeds the required wall height, other administrative, engineering or natural ballistic wall controls must be administered or considered such as shooter-to-instructor ratio, canopies, baffles, natural terrain, existing SDZ, standard operating procedures, and training.

(2) Ballistic Walls. Ballistic interior walls are the preferred method of construction. Where non-ballistic interior walls are used, additional administrative controls must be applied to target placement and team...
choreography. Ballistic walls are required in all cases where containment of the round and protection of personnel is paramount.

(a) **Footings.** Footings must be designed using the engineering criteria that best ensures structural integrity and stability of wall construction.

(b) **Composite Walls.**

1. A combination of ¾-inch exterior grade plywood and steel is effective. Minimum thickness will be ¼-inch mild steel with an exterior-grade plywood separated by a minimum of ¼ inch with a maximum of 1½ inches from the steel surface.

2. Other combinations are possible. The main criterion is that the wall must stop any round fired and contain bullet fragments.

(3) **Non-Ballistic Walls.** These walls are constructed of materials that offer no protection to personnel or equipment in adjoining rooms. Material used for these walls must not contribute to or enhance ricochet or splatter. Additional administrative controls must be applied such as target placement and team choreography.

e. **Doors.** All doors must be constructed of wood with no glass. Additionally, at least a portion of the rooms must have working doors, some opening inward, some opening outward, and doors opening left and right.

NOTE: All devices in the LFSH, such as brackets and hangers, used to secure walls to floors or secure doors must be covered or protected to mitigate any tripping or ricochet hazards.

f. **Ceiling or Roofs.** Ceilings or roofs can be of value when the shoot house is required for year-round use in areas with severe weather conditions. Exposure to airborne contaminants must be controlled by adequate ventilation. The lighting requirements for fully enclosed shoot houses are similar to those for indoor ranges. When training exercises require target placement above the wall design, the ceiling or roof must be protected unless firing into an approved SDZ.

g. **Floors.**

(1) Floor construction must be selected for its ability to absorb direct fire, minimize ricochets, and provide a walking surface free of slipping/tripping hazards. Floors should provide the same ricochet protection as walls. Options include:
Range Design Criteria
June 2012

(a) exterior-grade plywood floor constructed in accordance with American Plywood Association guidelines over smooth finished concrete;

(b) concrete with brushed surface that minimizes slip and tripping hazards;

(c) asphalt;

(d) exterior-grade plywood;

(e) shredded bias-ply tires; and

(f) earth, free of rocks and debris that could cause ricochet.

(2) Construction joints between walls and floors must be designed to contain projectiles within the LFSH.

h. Bullet Traps.

(1) General Information.

(a) Targets used in LFSHs must be placed so that fire is directed into a bullet trap designed to capture the rounds.

(b) Bullet traps must be constructed to contain the most energetic projectile to be fired into them without dimpling/pitting the steel and contain splatter and fragments in all directions. The size and shape of a bullet trap may be altered, but materials may not be substituted.

(2) Specifications for construction. See “Use of Bullet Traps and Steel Targets” for Shoot House bullet trap information.

i. Elevated Observation Control Platform (EOCP).

(1) EOCPs enhance the ability to observe and control LFSH operations. Administrative controls must be considered when constructing the EOCP. Platform construction and location is based on the training to be conducted. EOCPs must be constructed in accordance with all applicable regulations for elevated work platforms.

(2) EOCPs must be constructed to:

(a) maximize instructors’ observation and control of the entry team fire and movement;
(b) facilitate communication between instructors on the EOCP and the floor;

(c) position the lowest point of the horizontal walking surface higher than the 15° vertical error for any target engaged;

(d) provide ready access;

(e) integrate instructors' movement with team flow;

(f) maximize instructors' ability to see shooters clearly at all times; and

(g) have supporting structures placed so that they pose no additional hazards such as tripping, ricochet, splatter, etc.
ATTACHMENT 1 -- RANGE DESIGN FIGURES

Figure 1. Surface Danger Zone for Small Arms Firing at Fixed Ground Targets
Figure 2. SDZ for Small Arms Weapons Firing at Moving Ground Targets
Figure 3. SDZ for Small Arms Firing at Fixed Ground Targets with Rocky Soil or Targets Causing Ricochet
Figure 4. SDZ for Firing M79, M203, and M19 40mm Grenade Launchers
Figure 5. SDZ with Impact Berm for Small Arms Firing at Fixed Ground Targets
Figure 6. Open Range with Impact Berm and Side Protection SDZ for Small Arms Firing at Fixed Ground Targets
Figure 7. SDZ for Partially Baffled Range (Small Arms Firing at Fixed Ground Targets)
Figure 8. SDZ for Fully Baffled Range (Small Arms Firing at Fixed Ground Targets)
Figure 9. Ballistic Overhead Canopy
Figure 10. Outdoor Rifle Range Layout
Figure 11. Pistol Range Layout
Figure 12. Ballistic Material
Figure 13. Ballistic Protection of Target Mechanism
Figure 14. Impact Berm for Open and Partially Baffled Ranges
Figure 15. Outdoor Baffled Bullet Stop
Figure 16. Baffled Range Profile
Figure 17. Baffled System Geometry
Figure 18. Overhead Baffle Ballistic Designs
Figure 19. Parallel Ranges
Attachment 1
Attachment 1-2

Range Design Criteria
June 2012

Figure 1
Surface Danger Zone for Small Arms
Firing at Fixed Ground Targets
SECONDARY DANGER AREA

LIMIT OF FIRE FROM RIGHT FIRING POINT

SECONDARY DANGER AREA DEFINED AS:
AREA PROVIDED TO CONTAIN FRAGMENTS FROM ITEMS EXPLODING OR RICOCHETING ON THE RIGHT OR LEFT OF THE IMPACT AREA

TARGET LINE

THE CONTROLLING "CLOSE-IN" DOWN RANGE SIDE LIMITS ARE DETERMINED BY THE END-POSITION FIRING LANES

FIRING LINE

IMPACT AREA

MOVING TARGET AREA

LIMIT OF FIRE FROM LEFT FIRING POINT

THE CONTROLLING "DISTANT" DOWN RANGE SIDE LIMITS ARE DETERMINED BY THE PROJECTION OF EXTREME FIRING POINTS THROUGH THE OPPOSITE EXTREME TARGET POINTS

OPEN RANGE

(219 yards)

Figure 2
Surface Danger Zone for Small Arms Weapons
Firing at Moving Ground Targets
Figure 3
Surface Danger Zone for Small Arms Firing
At Fixed Ground Targets with Rocky Soil
Or Targets Causing Ricochet
Figure 4
Surface Danger Zone for Firing
M79, M203, and M19 40mm Grenade Launchers

Notes:
1. Prohibit cross-lane firing when using multiple firing positions.
2. Maximum range (400 m/437 yd) may be reduced when positive elevation control devices are used to limit range to impact distance.
3. For MK19, 40mm machine gun, maximum range is 2200m (2406 yd.) and will not be reduced.
Figure 5
Surface Danger Zone with Impact Berm for Small Arms Firing at Fixed Ground Targets
Figure 6
Open Range with Impact Berm and Side Protection Surface Danger Zone for Small Arms Firing at Fixed Ground Targets
Figure 7
Surface Danger Zone for Partially Baffled Range
(Small Arms Firing at Fixed Ground Targets)
Figure 8
Surface Danger Zone for Fully Baffled Range
(Small Arms Firing at Fixed Ground Targets)
Figure 9
Ballistic Overhead Canopy

Note: Concrete foundation dimensions to be determined according to site soil conditions.
Range Design Criteria
June 2012

Impact BERM IF REQUIRED
NOTE 3

TARGETS AND TARGET FRAMES ON TARGET CARRIERS

LINE OF TARGETS

STORE HOUSE BEHIND TARGET MECHANISM

PROTECTIVE BERM

TARGET BASE PROTECTION

NOTES:
1. TARGET/OR FIRING LINES AS REQUIRED BY ACTIVITY
2. FIRING LINE AND TARGET LINES ARE PARALLEL, FIRING LINE POSITIONS ALIGNED WITH TARGET POSITIONS
3. MINIMUM DISTANCE BETWEEN TOE OF IMPACT BERM AND TARGET PIT, WHERE PERSONNEL PULL TARGETS SHOULD BE 25 m, (27 yds)

Figure 10
Outdoor Rifle Range Layout
IMPACT BERM IF REQUIRED

15 m (MIN) (16 yds)

TARGET LINE 50 m or yd

TARGET BASE PROTECTION

1.5 m (16 yds)

NOTES:
1. TARGET/ OR FIRING LINES AS REQUIRED BY ACTIVITY

2. FIRING LINE AND TARGET LINES ARE PARALLEL. FIRING LINE POSITIONS ALIGNED WITH TARGET POSITIONS

TARGET LINE PROJECTIONS MUST BE REMOVABLE

NON-TURNING TARGETS (1000 m Rifles Only)

TURNING TARGETS (25 m or yd)

DIRECTION OF FIRE

CONTROL TOWER OR GROUND LEVEL CONTROL BOOTH

RANGE WIDTH

Figure 11
Pistol Range Layout
Wood Cap

.019 m Plywood (Sacrificial)
.019 m Air Space
AR500 Steel Plate

.08 m Lumber with horizontal joints

Bottom 4 m receives most hits. Section baffle for easy replacement

Column

Direction of fire

OB-1

1.25 m to 2.0 m varies

0.10 m Precast Concrete

Air Space between columns

AR500 Steel Plate

45° M.N.

Column Cross-section & Material varies

NOTE: SEE TABLE 2 FOR THICKNESS OF STEEL

Figure 12
Ballistic Material
1. 3/8" STEEL PLATE TO PROTECT TOP OF WALL AND WOOD
2. DIMENSION DETERMINED BY THE PROTECTIVE REQUIREMENTS OF FURNISHED EQUIPMENT

NOTE 1. STEEL OR ARMOR PLATE SELECTED FROM TABLE 1.
2. DIMENSION DETERMINED BY THE PROTECTIVE REQUIREMENTS OF FURNISHED EQUIPMENT

NOTE 1. DEPTH AND WIDTH OF TRENCH DETERMINED BY TYPE OF MECHANISM INSTALLED

FREE STANDING TURNING OR POP-UP MECHANISM IN TRENCH WITH DRAIN

Figure 13
Ballistic Protection of Target Mechanism
Range Design Criteria
June 2012

Attachment 1
Attachment 1-15

Notes:
1. Outline of impact berm if all earth berm is used in lieu of combination earth berm/baffle.
2. Back slope may be increased or decreased dependent upon soil stability, erosion potential, or maintenance equipment.
3. Provide adequate distance between berm and target line for maintenance of target and slope of berm [minimum 9 m (10 yd)].
4. Preferred slope of impact berm face is 1:1 or steeper. For shallower slopes a bullet catcher is required. Top baffle must be placed as shown if used in lieu of all earth berm. Bullet catcher is 0.95 cm (3/8 in.) steel plate positioned above point of bullet impact at 90° angle to face of berm slope. Plate protrudes at least 0.6 m (2 ft) from face of berm.

Figure 14
Impact Berm for Open and Partially Baffled Ranges
Figure 15
Outdoor Baffled Bullet Stop
NOTES
1. PROFILE BASED ON A LEVEL RANGE
2. OVERHEAD BAFFLES 1.25 TO 2.0 m HIGH, BOTTOM SET 0.15 m ABOVE UPPER FIRING LIMIT.
3. HORIZONTAL SPACING AS REQUIRED TO BRING BULLET INTO BAFFLE AT POINT NOT LESS THAN 0.15 m BELOW TOP OF BAFFLE FRONT FACE.

DETAIL "A"
Notes:

1. These are typical examples of a baffled range.
2. Baffles are spaced according to the downrange area.
 a. Where inhabitants are less than 0.4 km (0.25 mi), use design "A."
 b. Where controlled areas extend beyond 0.4 km (0.25 mi), use design "B."
3. Baffle installation may not be required where terrain features such as mountains exist.
4. When baffles may be required as encroachment occurs, plan a program of installation over a 5-year period.
5. See Figure 9 for firing line cover details.

Figure 17
Baffle System Geometry
Figure 18

Overhead Baffle Ballistic Designs

Wood dimensions are nominal.
NOTE: SURFACE DANGER ZONES FOR PARALLEL UNBERMED RANGES MAY OVERLAP AS SHOWN, BUT NOT CLOSER THAN 45 m (50 yd) TO THE ENTRY POINT FOR THE TARGET LINES ON THE ADJACENT RANGE. WHEN THIS IS NOT POSSIBLE AND THE REQUIREMENT EXISTS FOR SIMULTANEOUS OPERATION OF ADJACENT RANGES, A SEPARATING WALL OR BERM WILL BE REQUIRED. THE LENGTH OF THE WALL OR EMBANKMENT SHALL BE FROM THE MOST DISTANT FIRING LINE TO THE TARGET LINE. THE WALL MAY BE 200 mm (8 in) THICK CONCRETE, 300 mm (12 in) THICK GROUT-FILLED CONCRETE MASONRY UNIT, OR EQUIVALENT.

Figure 19
Parallel Ranges
COMMUNITY
NOISE
ENFORCEMENT

June 2012

RUTGERS
THE STATE UNIVERSITY
OF NEW JERSEY
NOISE TECHNICAL ASSISTANCE CENTER
DEPARTMENT OF ENVIRONMENTAL SCIENCES
COMMUNITY NOISE ENFORCEMENT

A manual to accompany the certification course: "Community Noise Enforcement." The certification conferred by this course is recognized in jurisdictions throughout the United States and internationally.

Editor
Eric M. Zwerling, M.S., INCE, ASA
Director, Rutgers Noise Technical Assistance Center

Rutgers Noise Technical Assistance Center
Rutgers, The State University of New Jersey
Department of Environmental Sciences
14 College Farm Road
Cook College
New Brunswick, NJ 08901-8551

Phone: (732) 932-9800 x 6137
Fax: (732) 932-8644
E-mail: zwerling@rutgers.edu
Website:
http://www.envsci.rutgers.edu/org/rntac/

State of Alaska
June 2012

The contents of this manual may not be reproduced without the express written consent of the Director of the Rutgers Noise Technical Assistance Center.

The contents of this manual are printed on recycled paper.
Buy and use recycled content products.
TABLE OF CONTENTS

STATE OF ALASKA - 2012

<table>
<thead>
<tr>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assorted Noise Impacts</td>
<td>3</td>
</tr>
<tr>
<td>Sound v Noise</td>
<td>4</td>
</tr>
<tr>
<td>Properties of Sound - Intensity & Frequency</td>
<td>5</td>
</tr>
<tr>
<td>Meter and Weather Requirements</td>
<td>10</td>
</tr>
<tr>
<td>Know Your Meter</td>
<td>12</td>
</tr>
<tr>
<td>Calculating Source Sound Levels</td>
<td>13</td>
</tr>
<tr>
<td>Determination of Ambient Sound Levels</td>
<td>16</td>
</tr>
<tr>
<td>Procedures for the Completion of a Noise Measurement Report</td>
<td>21</td>
</tr>
<tr>
<td>Noise Measurement Report - Completed Samples</td>
<td>24</td>
</tr>
</tbody>
</table>

NOISE CODES

| Wasilla - Chapter 8.52: Noise, Amplified Sound, Vibration | 32 |
| Anchorage - Chapter 15.70 - Noise Control | 35 |

APPENDICES

| Appendix A - Guidelines for Community Noise - World Health Organization | 52 |
| Appendix B - Noise Control | 67 |
Introduction

Unregulated sources of noise can have impacts far beyond the obvious transitory nuisance, and complainants may be enduring more than simple annoyance. Exposure to loud noise has been shown to result in uncontrollable stress which can result in alterations in mood as well as hormonal and nervous system changes in healthy subjects (Brier, 1987; Babish, 2003). A lack of control over noise results in a variety of neurobiological and behavioral alterations, a phenomenon known as "learned helplessness" (Brier, 1987). It has been demonstrated that blood pressure is reproducibly elevated in response to intermittent loud noise (Sawada, 1993). The noxious stimulus of noise has been used as a laboratory model for producing stress because it results in the same biological and physiological responses as other stressors (Suter, 1992). Noise has been clearly implicated in sleep disturbance (Lukas, 1977), resulting in a cascade of negative effects (WHO, 2009). The stress, tension and fatigue associated with long-term exposure to noise has destroyed marriages, cost people their jobs and forced other people to sell their houses at significant losses (RNTAC, 1991-2012).

In 1974, the United States Environmental Protection Agency estimated that nearly 100 million Americans lived in areas where the daily average noise levels exceeded its identified safe \(L_{dn} \) (Day Night Level) of 55 dB (EPA, 1974). In 1990, that estimate had risen to 138 million people (Eldred, 1990). In a 2003 study, 23% of the population of the Netherlands, a densely populated jurisdiction similar to the urban and suburban areas of Anchorage and Wasilla, described themselves as "highly disturbed by noise during sleep," as compared to five years earlier when that number was 19% (WHO, 2009).

While most enforcement officers may have no jurisdiction over noise sources such as aircraft, road noise and railroads, we can still improve the quality of life for complainants who are exposed to a whole range of noise sources. It is equally as important to educate the regulated community as to what their legal responsibilities are. Once it has been demonstrated that a noise source is not in compliance with the applicable ordinance, there exists significant leverage to gain compliance.

The course "Community Noise Enforcement," and this manual by the same name, have been designed to aid enforcement officers, the regulated community and noise consultants to gain a clear understanding of applicable noise ordinance, and the requirements for their proper enforcement. They are both geared towards real-world enforcement situations, and the possible tactics that might be used to challenge the validity of an enforcement action. Attention to detail is vital.
The certification conferred by this course is required of all enforcement officers in the State of New Jersey, and is also recognized in jurisdictions across the entire United States and beyond.

We sincerely appreciate this opportunity to assist you in bringing a better quality of life to the residents of the State of Alaska.

Eric M. Zwerling, M.S., INCE, ASA
Director, Rutgers Noise Technical Assistance Center

ASSORTED NOISE IMPACTS

NOISE PRODUCES ELEVATED BLOOD PRESSURE, FASTER HEART RATES AND INCREASED NEUROENDOCRINE HORMONE LEVELS

NOISE HAS BEEN USED BY THE PHARMACEUTICAL INDUSTRY TO INDUCE STRESS FOR DRUG TRIALS

NOISE CAN CAUSE REGULAR AND PREDICTABLE STRESS ON THE HUMAN BODY

PERCEIVED LACK OF CONTROL - THE "LEARNED HELPLESSNESS" SYNDROME

PEOPLE DO NOT GET USED TO NOISE - THE BODY CONTINUES TO REACT

NOISE EFFECTS THE QUANTITY AND QUALITY OF SLEEP

WHEN SLEEP IS DISTURBED, WORK EFFICIENCY AND HEALTH MAY SUFFER

NOISE MAY AGGRAVATE EXISTING DISEASE

THE SICK AND ELDERLY ARE MORE SENSITIVE TO DISRUPTIVE NOISE

THE FETUS IS NOT FULLY PROTECTED FROM NOISE

NOISE DISRUPTS THE EDUCATIONAL PROCESS & HINDERS LANGUAGE DEVELOPMENT

NOISE CAN OBSCURE WARNING SIGNALS, CAUSING ACCIDENTS TO HAPPEN

NOISE INTERFERES WITH CONVERSATION AND SOCIAL INTERACTION

NOISE DISRUPTS THE PEACEABLE ENJOYMENT OF ONE'S PRIVATE PROPERTY

NOISE CAN CAUSE EXTREME EMOTIONS AND BEHAVIOR

ANTI-SOCIAL BEHAVIOR CAUSED BY NOISE MAY BE MORE PREVALENT THAN IS REALIZED

THERE ARE DOCUMENTED CASES OF NOISE-INDUCED ARSON - ASSAULT - MURDER - SUICIDE
SOUND

Sound waves are a series of compressions and rarefactions within a medium.

Propagation of a sound wave due to a vibrating body.

NOISE

Occurs when these sound waves reach a sensitized receptor.

... noise is any unwanted sound.

It's ear pollution.
PROPERTIES OF SOUND

![Displacement-time graph of a sound wave]

INTENSITY

The bigger the compression, the larger the amplitude, the more the energy, the 'louder' it is.

\[\text{dB} = 20 \log_{10} \frac{P_{\text{measured}}}{P_{\text{reference}}} \]

The decibel scale is logarithmic, 3 dB = a doubling of intensity. However, 10 dB = a doubling of perceived loudness (6 dB at the lowest frequencies).

The average threshold of human perception is 20 micropascals (\(\mu \text{Pa} \)) or 0.0002 microbar - this is set as the reference number.

Therefore, 0 (zero) decibels is the average threshold of human hearing, not the absence of sound pressure.

0 dB threshold of hearing - - - 130,140 dB threshold of pain
Fig. 5-3. Examples of some typical sound levels, expressed in micropascals on the left side of the scale and decibels on the right. (From Brue! & Kjaer, 1984, reproduced with permission.)
PROPERTIES OF SOUND
FREQUENCY (PITCH)

Unit of Measure
Hertz (Hz) – cycles per second

Range of Human Hearing – 20 Hz to 20,000 Hz

Humans are most sensitive to 1000 Hz to 4000 Hz

The audible frequency range of various musical instruments and voices. Only the fundamental tones are included; the partials go much higher. The very low piano and organ notes are perceived largely through their partials. Not shown are the many high-frequency incidental noises produced by the instruments. C. & C. Conn, Ltd., Oak Brook, Illinois.

The A-scale (dBA) is a weighting system which approximates human perception to sounds of moderate intensity. The A-scale discriminates against low frequencies. While humans are relatively insensitive to low frequency sound at low intensities, we are much more sensitive to those same low frequencies at higher intensities – when they are highly amplified.
Conversion of Sound Levels from Unweighted Sound Pressure (flat or Z-scale response) to A- and C-scale Weighting

1/3 and 1/1 Octave Bands

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>A Weighting (dB)</th>
<th>C Weighting (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-70.4</td>
<td>-14.3</td>
</tr>
<tr>
<td>12.5</td>
<td>-63.4</td>
<td>-11.2</td>
</tr>
<tr>
<td>16*</td>
<td>-56.7</td>
<td>-8.5</td>
</tr>
<tr>
<td>20</td>
<td>-50.5</td>
<td>-6.2</td>
</tr>
<tr>
<td>25</td>
<td>-44.7</td>
<td>-4.4</td>
</tr>
<tr>
<td>31.5</td>
<td>-39.4</td>
<td>-3.0</td>
</tr>
<tr>
<td>40</td>
<td>-34.6</td>
<td>-2.0</td>
</tr>
<tr>
<td>50</td>
<td>-30.2</td>
<td>-1.3</td>
</tr>
<tr>
<td>63</td>
<td>-26.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>80</td>
<td>-22.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>100</td>
<td>-19.1</td>
<td>-0.3</td>
</tr>
<tr>
<td>125</td>
<td>-16.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>160</td>
<td>-13.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>200</td>
<td>-10.9</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>-8.6</td>
<td>0</td>
</tr>
<tr>
<td>315</td>
<td>-6.6</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>-4.8</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>-3.2</td>
<td>0</td>
</tr>
<tr>
<td>630</td>
<td>-1.9</td>
<td>0</td>
</tr>
<tr>
<td>800</td>
<td>-0.8</td>
<td>0</td>
</tr>
<tr>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,250</td>
<td>+0.6</td>
<td>0</td>
</tr>
<tr>
<td>1,600</td>
<td>+1.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>2,000</td>
<td>+1.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>2,500</td>
<td>+1.3</td>
<td>-0.3</td>
</tr>
<tr>
<td>3,150</td>
<td>+1.2</td>
<td>-0.5</td>
</tr>
<tr>
<td>4,000</td>
<td>+1.0</td>
<td>-0.8</td>
</tr>
<tr>
<td>5,000</td>
<td>+0.5</td>
<td>-1.3</td>
</tr>
<tr>
<td>6,300</td>
<td>-0.1</td>
<td>-2.0</td>
</tr>
<tr>
<td>8,000</td>
<td>-1.1</td>
<td>-3.0</td>
</tr>
<tr>
<td>10,000</td>
<td>-2.5</td>
<td>-4.4</td>
</tr>
<tr>
<td>12,500</td>
<td>-4.3</td>
<td>-6.3</td>
</tr>
<tr>
<td>16,000</td>
<td>-6.6</td>
<td>-8.5</td>
</tr>
<tr>
<td>20,000</td>
<td>-9.3</td>
<td>-11.2</td>
</tr>
</tbody>
</table>

Note: Center frequencies of 1/1 octave bands appear in bold.

METER AND WEATHER REQUIREMENTS

A. General Instrumentation Requirements:

1. **Sound Level Meter**
 - Must meet the specifications of ANSI S1.4-1983 or its successor
 - Type II (General Purpose) or Type I (Precision)

2. **Sound Level Calibrator**
 - Must meet the recommendation of the sound level meter manufacturer

3. **Windscreen**
 - Must meet the recommendation of the sound level meter manufacturer
 - May be spherical or cylindrical
 - Made of foamed polyvinyl, open-celled polyurethane or silk covered grid.
 - Should not distort microphone frequency response by more than:
 - +/- 1.0 dBA Frequency: 20-4,000 Hz
 - +/- 1.5 dBA Frequency: 4,000-10,000 Hz

4. **Wind Speed Indicator**
 - Pressure tube or rotating vane anemometer
 - Manufacturer must provide accuracy rating in MPH or percent
 - There are relatively inexpensive handheld weather meters available (ex. "Kestrel 3000 Wind Meter," [no endorsement implied]) which can quickly determine wind speed, temperature and relative humidity in the field.

B. Weather Conditions:

1. **Wind**
 - Always use windscreen. A sound level meter can misread wind pressure as sound pressure and introduce significant error. A windscreen can also provide some protection to the microphone from dust and accidental impacts.
 - Windspeed must be measured at the time and place of sound level measurements.
 - Do not take sound level measurements when the windspeed exceeds the manufacturer's recommendations for the meter and the specific windscreen employed. Generally, the limit is 12 MPH. Some manufacturers offer windscreens that can be used up to 25 MPH.

2. **Temperature**
 - At high temperatures the sensitivity of the meter can be permanently altered.
 - Low temperatures affect batteries and other electrical components
 - The meter should be calibrated when its internal temperature is close to the ambient temperature at which it will be used.
 - The ANSI standard states that measurements may not be taken when the ambient temperature is below 14°F or above 122°F.
3. **Humidity**
 - Most sound level meters can be operated up to 90-95% relative humidity.
 - Condensation can cause arcing which results in false readings. The error is not subtle, and will be obvious.

4. **Precipitation**
 - Measurements should not be taken under any condition which allows the meter to become wet, such as rain, snow or condensation, unless specifically equipped to do so.
 - Even if your jurisdiction's code does not prohibit measurements during precipitation, do not use the meter beyond the parameters recommended by the manufacturer (fog, rain, snow). If these parameters are met, readings may be taken while protecting the meter and the microphone. All readings must be taken in a similar manner.
 - Instruments are not waterproof. Waterproof housings are available for some units from the manufacturer for the meter and the microphone.
 - The ambient sound levels are significantly higher when it's raining down on horizontal sheet metal surfaces such as automobiles and air conditioners.
 - Wet pavement can cause higher sound level readings (tires, etc.).

5. **Electromagnetic Fields**
 - Do not take readings immediately next to electrical transformers, radio or television transmission towers, or power lines, unless the manufacturer states that the meter is properly shielded. These may contribute to internal electrical noise of the sound level meter.
KNOW YOUR METER.
READ YOUR MANUAL.

ALWAYS ASSUME THAT COUNSEL FOR THE DEFENSE HAS.

1. Is a warm-up period required for the meter and the calibrator?
 - Older meters may require a warm-up period of up to 30 seconds.
 - Newer meters usually require at most a five second warm-up.

2. What scale must you employ for calibration?
 - Newer meters generally specify calibration on the A-scale.

3. At what angle should you hold the microphone with relationship to the sound source?
 - The angle is specific to the microphone, and some meters can be supplied with a range of microphones.

4. What is the stated accuracy of your meter?
 - ANSI S1.4-1983 specifies that a Type I meter should have an accuracy of +/- 1 dB or better, and a Type II meter should have an accuracy of +/- 2 dB or better.
 - Newer meters often exceed ANSI standards.
 - Know that in court it may be assumed that the meter is reading high, at the maximum of the accuracy range. Take this into consideration when determining whether to proceed to prosecution.

5. Octave Band Analysis
 - Does your meter automatically reset to "linear, "flat," or "Z-scale" when you engage the octave filter? Some do not, and if you do not manually select unweighted measurements, you may be taking A-weighted octave band sound pressure level measurements. These measurements can not then be used for enforcement purposes, without correction.
 - Conversely, if necessary, make sure to reset your meter for A-weighting when returning to broadband measurements. Otherwise, you will be taking unweighted broadband measurements which will be unusable for enforcement purposes.
CALCULATING SOURCE SOUND LEVELS

How do you subtract out the ambient (background) sound?

Table 1
Correction for Ambient Sound Levels (ASL) in Decibels
Determining the Corrected Source Level (CSL) to Report on Form

<table>
<thead>
<tr>
<th>Difference Between Total Sound Level and Ambient Sound Level (in dB)</th>
<th>Correction Factor to Be Subtracted From Total Sound Level (TSL) to Calculate Corrected Source Level (CSL)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>Source < Ambient, therefore unenforceable</td>
<td>Write "UE"</td>
</tr>
<tr>
<td>3</td>
<td>3 (but source would equal ASL)</td>
<td>Write "UE"</td>
</tr>
<tr>
<td>4,5</td>
<td>2</td>
<td>Do math</td>
</tr>
<tr>
<td>6-9</td>
<td>1</td>
<td>Do Math</td>
</tr>
<tr>
<td>10 or more</td>
<td>0</td>
<td>Report TSL as CSL</td>
</tr>
</tbody>
</table>

Adapted from:
CALCULATING SOURCE SOUND LEVELS
FROM BACKGROUND AND TOTAL MEASUREMENTS
-or SUBTRACTION OF SOUND LEVELS

When you're in the field, you take two types of measurements: ambient and total. From these measurements you have to calculate the source sound level. The potential violation is based solely on the level of noise being emitted from a specific activity; you can't fine someone because they're operating in a noisy neighborhood. Yet, you can't directly measure the sound level from the activity in question. That's why you have to subtract the ambient from the total to determine the source sound level.

Here's how it's done:

1. Subtract the ambient level from the total noise level. (total - background = "X").
2. Using Table I on the previous page, find "X" in the left hand column.
3. Match "X" to a number in the right hand column.
4. Subtract the number in the right hand column from the total noise level.
5. The number you now have is called the CORRECTED (SOURCE) LEVEL, and this is the number that you record on the Noise Report Form.

Example A

1. You have a total sound level of 69 dBA, and an ambient level of 63 dBA.
2. 69 dBA - 63 dBA = 6 dB. This is "X", the number you look for in Table I, left column.
3. 6 dB in the left column gives you 1 dB in the right column.
4. Subtract 1.0 dB from the TOTAL SOUND LEVEL to get the CORRECTED SOURCE SOUND LEVEL.

 69 dBA - 1 dB = 68 dBA **the CORRECTED SOURCE LEVEL**

Example B

1. After measuring the ambient sound level decide which sample set or range you want to use as your ambient. A source-off measurement is always used if possible.

 Example: 52 - 56 dBA
 51 - 55 dBA
 54 - 57 dBA CHOOSE THIS ONE

 (Continued)
CALCULATING SOURCE SOUND LEVELS
(Continued)

Now, remember - you must use the higher number in an ambient set, so the number that you'll use for all further calculations is 57 dBA

\[\text{AMBIENT} = 57 \text{ dBA} \]

2. You will have a series of total sound measurements taken while the sound source is on, at the point of the complaint. Let's say one set of readings gives you a total range of 61 - 64 dBA.

3. To determine the corrected source level, perform the subtraction: 64 dBA - 57 dBA = 7 dB. Look at Table I, and you'll see that 7 dBA in the left column gives you 1 dBA in the right column.
\[64 \text{ dBA} - 1 \text{ dBA} = 63 \text{ dBA} \text{ THIS IS THE CORRECTED SOURCE LEVEL} \]

This is what is reported on the Noise Measurement Report, and compared to the permissible limits.

Example C:

<table>
<thead>
<tr>
<th>Ambient</th>
<th>62 dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>69 dBA</th>
<th>71 dBA</th>
<th>77 dBA</th>
<th>67 dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69-64 = 5</td>
<td>71-64 = 7</td>
<td>77-64 = 13</td>
<td>67-64 = 3</td>
</tr>
</tbody>
</table>

| CORRECTED SOURCE SOUND LEVEL (dBA) | 69 - 2 = 67 | 71 - 1 = 70 | 77 | -- (Unenforceable) |

IMPORTANT NOTES:

1) If "X" is 10 dB or greater, THEN NO CORRECTION IS NECESSARY. TOTAL = SOURCE.

2) If "X" is less than 3 dB, it means that the source sound level is at or below the background level. Many jurisdictions simply write "U.E." (unenforceable), or "--", or simply leave it blank.

3) Do not include your calculations to find "X" on your report form [it just clutters it up]. Do include any calculations, if necessary, for arriving at the corrected source.

SEE SAMPLE REPORT FORM
DETERMINATION OF AMBIENT SOUND LEVELS

There are two critical reasons you need to accurately determine the Ambient Sound Levels (ASL).

- Some provisions set the Permissible Sound Level Limit (PSL) relative to the ASL.
- You must determine the Source Sound Level of the source under investigation and almost every sound source you will investigate occurs within a complex acoustical environment.

Your goal is to isolate and quantify the sound levels of that sound source, alone. In order to accomplish that, you must accurately assess and measure the ASL. The ASL is the sound level of all the sound sources that are relatively constant when observed from the location on the complainant's property from which the investigation will be conducted. These sound levels exclude sound from the source under investigation, as well as extraneous sounds which are relatively intense and of short duration (such as airplanes, unmuffled vehicles, etc.).

While taking your measurements, you have to note which sounds constitute the ASL, and which are to be classified as extraneous. Remember, the only ASL sounds that matter are those impacting on the precise location at which you are measuring the source sound level (Total Sound Levels) (TSL). It doesn't matter whether there's an active cement plant three blocks over if you can't hear it on the complainant's property.

OUTDOORS

Source-Off measurements are obviously the truest measure of the ASL. The approach is simple: you take a measurement of the sound levels when the sound source under investigation is not operating, at the same location on the complainant's property at which the TSL measurements were conducted.

If the hours of operation are known:

```
Factory

Road

House
```

Source-off (SO) measurements are always preferable to any other method. Many strategies can be employed to collect such data:

- Very simply, ask the source to terminate operations for a few minutes. If they can, they have to
• If you know the hours of operation of the source, schedule the measurements so that you can take SO measurements prior to operations or after they terminate for the day (see illustration, previous page).

• If you can discern a duty cycle for the equipment, then take ASL measurements during a low- or off-cycle period. Air compressors turn off after re-pressurizing the tank. HVAC and refrigeration equipment is often controlled by a thermostat. Once demand is satisfied, the unit throttles down or off, affording an opportunity to measure ASL. Some equipment is completely demand operated, such as a garage door opener. If possible, position yourself where you can observe the location from where the demand will arise (in this case, a view of the driveway), and be prepared to conduct your ASL and TSL measurements based upon your observations.

• If the duty cycle of a device is demand driven, it may be weather dependent, and thus more predictable. Any device that provides chilling or cooling may be forced to operate non-stop when the temperature and humidity are high, precluding the collection of SO data. Conversely, if the temperature and humidity are lower, the unit may occasionally cycle off providing an opportunity to collect SO data. If the investigation can wait, scheduling it based upon weather reports may well increase the possibility of SO measurements.

• A useful strategy is to ask the complainant to keep a log of their observations of the sound source and its emissions. Explain that the log will aid you, increasing the possibility of a fruitful investigation and that you need an opportunity to measure the source when it is operating at full load, and also the ambient levels when it is off. If the source is only intermittent in its operation, their records will increase the possibility that you will be there to measure it. Conversely, if the source tends to run relatively constantly, their log may allow you to predict a time when you will be able to collect SO measurements. Their records should include: their subjective evaluation of the relative sound level; day of the week; time of the day; weather conditions; and, any other conditions that they think may be relevant. These records may also assist in establishing a pattern for the purposes of prosecution.

• Sources which emit fluctuating sound levels, such as music, will usually offer short periods of time when the sound levels drop considerably. This may occur: between sets; when a song is winding down; or, a relatively quiet vocal passage in an otherwise loud instrumental piece. Remain aware and vigilant for such an opportunity and jump on it when it presents itself.

• Source sound levels may increase significantly when a door is opened regularly, or a thermostatically-controlled fan opens louvers. You may find this at facilities such as a distribution center, bar, workshop, or garage. Even if the sound source inside is audible or loud when the building is closed, the sound levels may increase by more than the permissible limit when the door opens. If, every time they open the door, the sound levels jump by 15 dBA, then it is essentially irrelevant what the 'true' ASL is; the facility is in violation. Note how often the door is opened and for how long the sound level remains elevated.
Walk Away measurements are one of the methods that can be used when the sound source under investigation can not be turned off. If the primary source of ambient sound is steady traffic on the immediately adjacent road, you simply walk along the sidewalk, away from the source under investigation, remaining equidistant to the road (see illustration). Walk away, noting the drop in the sound level as the influence of the source sound emissions wane. Record the meter reading when it levels off. If you walk towards a new sound source of significant intensity that was not present at the location of the TSL measurements, then these measurements should not be used.

What do you do when there's a point source of ambient sound, such as a second bar or a chiller on a nearby building? It is critical that the ASL measurement location is the same distance from that point source of ambient sound as was the location at which you conducted your TSL measurements. In the illustration above, the TSL measurements include the following sound sources: 1) the source under investigation; 2) the steady traffic on the roadway — an ambient source; and, 3) some point source of ambient sound, such as a nearby chiller. The ASL at this location consists of #2 and #3, and you must properly measure them. If you can't get a source-off measurement, then a walk-away can serve the purpose well. Walk away from the source under investigation, along the sidewalk, until you are perpendicular from the point source of ambient sound, and then walk the same distance beyond that source. Make sure that you are the same distance from the road, and this is the location from which the ASL measurements can be taken. Show the detail on your Report Form, and be prepared to articulate how this location for ASL measurement properly represented the ambient sounds impacting on the location at which you conducted your TSL measurements.

What if there's no road, only some point source of ambient sound? Simply take your ASL measurements on the 'other' side of the ambient point source, at the same distance you were when
you conducted your TSL measurements. Always think: "equidistance - - am I at the same distance from the ambient source?" Be prepared to articulate this in court.

Behind Barrier measurements work when the barrier blocks your line of sight to the source under investigation, but not to the primary source of ambient sound.

Similar Neighborhood measurements may be taken if all other methods are unsuccessful. You must make sure that you remain equidistant from the primary source of ambient sound (such as two blocks from a major road), and in an area where the makeup of the buildings is the same as in the location at the complainant's property.

INDOORS

The same basic requirements apply to ASL measurements conducted indoors as do to outdoor measurements.

- *Source-off measurements are always preferable to any other method.*

- The sound from the source under investigation should have as little influence as possible on measurements of ASL. That does not mean, however, that the source under investigation must be completely inaudible.

- The measurement of ASL must include all ambient sounds that were present when the measurements of Total Sound were conducted. For example, if the measurements of Total Sound included traffic outside or air handling inside, then the measurements of ASL must
contain these, as well. Thus, you can’t use ASL measurements taken in a sheltered interior hallway if Total Sound measurements were taken in a bedroom whose single-pane windows overlook a busy street, filling the room with traffic noise.

- If a SO measurement is not possible, carefully consider what alternative location will yield acoustical conditions that are substantially the same as those at the location at which you measure the Total Sound Levels.

If forced to choose between two poor choices – ASL measurements in a location which is too sheltered, or, ASL measurements in a location which is somewhat contaminated with sound from the source – choose the latter. You must err to the benefit of the potential violator. A higher ASL is to their benefit. That said, don’t ‘give away the store’.

REMEMBER - accurate measurement of the Ambient Sound Level is absolutely critical to assessing the sound levels emanating from the sound source under investigation, and determining the Permissible Sound Level Limit.
PROCEDURE FOR THE COMPLETION OF A NOISE MEASUREMENT REPORT

Alaska

NOTE: The procedures outlined within this section should all be performed during an investigation, but they do not necessarily have to be performed in any given order. It is important for you to know what data must be collected for a valid investigation, and then gather that data in the order in which it presents itself during the flow of the investigation.

1. While not necessarily required to complete the field form, make sure you know what provision within your code applies to the source you're investigating. This is almost certain to influence your data collection in such critical areas such as: the measurement metric (dBA, dBC, Lmax, "plainly audible", etc.); the duration of the measurements; and, the location of regulatory compliance measurements.

2. Survey the site on foot to confirm that the suspected source is the actual source (a walk-around), and to determine the best locations from which to measure neighborhood residual and background sound levels. If the suspected source is proven to be the source, draw a map of the site on the back of the report form, including the path of the walk-around, the source and the exact points of measurement.

3. Record the name and address of the property from which the sound is being emitted, including street number if possible. If the source is not a fixed property, attempt to describe it with identifying characteristics, such as license plate number, and vehicle make and model.

4. Fill in day and date of measurement

5. Fill in your name and agency

6. List the name and title of any responsible party who has been notified of the investigation. Attempt to notify a representative of the management of the facility.

7. Describe the noise sources under investigation, including the location of the noise source, the operation of the facility or noise source, and if this measurement represents the normal operation of the noise source. Note whether the sound emissions are continuous or non-continuous, and whether they arise from an amplified source or not. If amplified, is the source commercial or non-commercial? Is the source an extended hours liquor establishment? Do the source and the receptor share a common wall? These factors may influence the required measurement methods and permissible limits (see your code).

8. Describe any ambient sounds which are fairly constant, including their location. Once you have categorized a specific sound as being background (or ambient) you must be careful to include it in all of your measurements.

1 As this course is attended by two jurisdictions with distinctly different noise codes, it is not possible for these guidelines to be specific to any one code. Please make certain to follow the requirements of your code.
9. Describe any extraneous sound which are intermittent, intense and of short duration. These sounds are noted but are specifically excluded or ignored when taking either total or background sound level measurements.

10. Provide a description of the sound level measurement equipment being used including manufacturer, model number, serial number, and the date of last calibration.

11. Conduct and report the times of field calibration and battery checks, which must be before, after and at least as often as required by the jurisdiction's code. In general, it is best to calibrate every hour.

Such field calibration checks are absolutely required for a valid noise measurement form.

12. Report whether there was precipitation or if the ground is wet. Measure and report wind velocity, with the time.

13. Measure and report ambient sound levels. The ambient sound levels may be measured by one of the following methods:

- Source off - the preferred method
- Walk away
- Behind barrier
- Similar neighborhood

Ambient sound level is measured as follows:

Ambient sound level measurements shall be conducted while the source under investigation is not operating, at the same location at which source sound level measurements are made. If this is not possible, ambient sound level measurements may be taken at an alternative location which should be as close as feasible to the location where the source sound levels are measured, but so located that the sound from the source has as little effect on the background sound level measurements as possible. The primary source of ambient sound must be equidistant to the location of the source sound level measurements and any alternate location for ambient sound level measurements. Any ambient sound level measurements must be made prior to or following any set of source sound level measurements.

- Determine the appropriate settings for the meter:
 - measurement scale (dBA, dBC, etc.)
- Take a sound level measurement using one of the above methods.
- Note which ambient measurement method was used.
- Record the reading for the measurement (ex. 51.7 dBA Lmax).
- Note the location of the measurement and any relevant comments.
- Record finish time.
- Determine which ambient measurement is to be used for the purposes of correction based on the following criteria:
 - Source off is always to be used, if it is available. Use the highest source off, being careful to exclude measurements that may include extraneous sounds.
 - All other ambient measurement methods are equivalent, and the highest is used, again, excluding any that may contain extraneous sounds.
- Circle the ambient level used for correction purposes on the form.
14. Measure and report the Total Noise levels.

- Determine the appropriate settings for the meter:
 - measurement scale (dBA, dBC, etc.)
- Record starting time.
- Make certain that you are measuring sound levels that represent the normal and usual operations of the source under investigation. Do not include accidental impacts or the like. Be fair.
- Take several sound level measurements at the location that is appropriate for your specific investigation, as required by your code. Generally, this is at or within the property of a complainant.
- Record the specific location of the measurement (on the site map) and any relevant comments (on the form).
- Record the sound level for the measurement (ex. 71 dBC), and the specific times of the reading.
- Record finish time, and the duration of the measurement. Make sure the total duration of your measurements are sufficient to determine compliance with the specific provision of the code.
- At each location, subtract (using the decibel subtraction technique) the maximum ambient level from the total noise level to obtain the corrected (source) level, as dictated by the provision you are enforcing.
 - You may only 'correct' A-scale total measurements with A-scale background measurements, and you may only 'correct' C-scale total measurements with C-scale background measurements.
- This calculated number is the source sound level and should be compared to the permissible limits in the ordinance being enforced, to determine if a violation exists.
- IMPORTANT NOTE: If the provision you are enforcing specifies a limit that sound source may not raise the Total Sound Level, or Ambient Sound Level, then you may not have to calculate the Corrected Source Level. You may only have to calculate the increase of sound levels between when the source is on and when it is off (i.e., simple subtraction). We will discuss this point extensively in the course.

15. Report your findings, specifically noting whether there was a violation of the code, and what provision was violated. Note whether the permissible limit was adjusted due to some characteristic of the sound such as duration.

A statement of impact may have value here, such as: "the sound was not only loud, the bass line of the music could be felt"; "the sound actually startled me when the unit kicked into operation"; "pedestrians crossed the street to avoid the noise"; "the sound level inside the bedroom exceeded the permissible limit, and not only could it have disrupted sleep, it even made conversation difficult" etc. Speak to the reasonableness of the noise, if you can.

16. Sign form

17. Submit form for review and approval (if necessary), and enforcement action if appropriate.

The better prepared you are to go to court, the less likely it is to happen. A well executed and documented investigation can prove very intimidating.
NOISE MEASUREMENT REPORT

Name/Address of Sound Source:
- LAKEVIEW LOUNGE, MARIKA
 - 782 LAKE ST
 - WASILLA, AK

Date of Measurement: 2/3/13
Day of Week: SAT

Investigator: JIMMY DETHEL

Name and Title of Responsible Party if Advised of Complaint:
- MR. LEVIN O & MACIEUS, OWNER

Description and Location of Sound Sources to be Measured
Including Operation of Facility, and if this Represents the Normal Operation of the Facility:
- BAR WITH AMPLIFIED MUSIC ON OUTDOOR OPEN DECK. COMPLAINANT STATES MUSIC STARTS AT 7:00PM, BANDS START AT 10:00PM. MUSIC CONTINUES UNTIL 2:00AM

Description and Location of Neighborhood Residual Sounds
Fairly Constant in Nature (included in all measurements):
- SLOW TRAFFIC ON PARKS HWY

Description and Location of Extraneous Sounds
Intermittent in Nature, Not from Source Facility (excluded from all measurements):
- UNMUFFLED VEHICLES ON PARKS HWY. ALL LOCAL TRAFFIC ON LAKE ST, S. WILLOW ST, PARKING AREA, SUSINA ME, AIRCRAFT, PARKING DOOR TRIM

Description of Instrumentation
- **Make, Model, ANSI Type**
- **Serial #**
- **Last Certified**

<table>
<thead>
<tr>
<th>Description of Instrumentation</th>
<th>Make, Model, ANSI Type</th>
<th>Serial #</th>
<th>Last Certified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level Meter</td>
<td>ATEC 247 TYPE III</td>
<td>3724</td>
<td>11/4/12</td>
</tr>
<tr>
<td>Sound Level Calibrator</td>
<td>ATEC 60</td>
<td>11590</td>
<td>11/4/12</td>
</tr>
<tr>
<td>Wind Screen (yes/no)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Meter (yes)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of Calibration/Battery Checks (Before, After, Every Hour)</td>
<td>01:16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather Conditions: Precipitation (yes/no)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Wet (yes/no)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>65°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Velocity, With Time Taken</td>
<td>1.4-2.3 MPH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Measurement of Ambient Sound:**
| **Time** | **Level (dB)** | **Type of Residual (source off, etc.)** | **Location of Measurement/Comments** |
| 01:25: | 60 | SOURCE OFF | BETWEEN SOURCES |
| 01:26: | 60 | SOURCE OFF | BETWEEN SOURCES |
| 01:27: | 60 | SOURCE OFF | BETWEEN SOURCES |
| 01:28: | 60 | SOURCE OFF | BETWEEN SOURCES |

Measurement of Total Sound

<table>
<thead>
<tr>
<th>Time</th>
<th>Level (dB)</th>
<th>Corrected (Source) Level</th>
<th>Location of Measurement/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:15:</td>
<td>60</td>
<td>60-2 = 62</td>
<td>A</td>
</tr>
<tr>
<td>01:16:</td>
<td>60</td>
<td>60-2 = 62</td>
<td>7</td>
</tr>
<tr>
<td>01:20:</td>
<td>65</td>
<td>65-2 = 63</td>
<td>7</td>
</tr>
<tr>
<td>01:21:</td>
<td>72</td>
<td>72</td>
<td>11</td>
</tr>
<tr>
<td>01:23:</td>
<td>74</td>
<td>74</td>
<td>13</td>
</tr>
<tr>
<td>01:24:</td>
<td>65</td>
<td>65-2 = 63</td>
<td>A Quiet Song</td>
</tr>
<tr>
<td>01:25:</td>
<td>60</td>
<td>60-2 = 62</td>
<td>A Quiet Song</td>
</tr>
</tbody>
</table>

Findings
- Music was in violation of 8.52.075(D), LIMIT IS 3DB
- Above ambient at this time of night. Levels of as much as 11:13 above ambient were documented

Case Disposition

Sound Measured By:

Johnny Deebell

Report Reviewed and Approved By (If Necessary):

Eliza Byers
NOISE MEASUREMENT REPORT

Name/Address of Sound Source:
- WEST MEADOW
- 1 DATA PARK
- 520 W. NEZU SW PKWY
- WASHINGTON

Date of Measurement: 7/27/13
Day of Week: SAT

Investigator: SALLY QUIET

Name and Title of Responsible Party if Advised of Complaint: ROBERT RODIN, OWNER

Description and Location of Sound Sources to be Measured, including Operation of Facility, and if this Represents the Normal Operation of the Facility:
- RADIO-CONTROLLED MODEL CAR RACING LAPS IN OPEN MEADOW._COMPLAINTS RECEIVED FROM PEOPLE AT WINTERGARDEN, CHILDREN'S STORY TELLING AND AT THE FOUNTAIN NEXT TO WATER DRIVE. MODEL CAR IS 60-90 MPH WHILST LIKE AN ANGRY WIND WALKER.

Description and Location of Neighborhood Residual Sounds, Fairly Constant in Nature (included in all measurements):
- GENERAL BUZZ OF PEOPLE TALKING, LAUGHING, ETC.- steady traffic
- ON NELSON LEAVES RUSTLING IN STEADY LIGHT WIND

Description and Location of Extraneous Sounds, Incidental in Nature, Not from Source Facility (excluded from all measurements):
- ESPECIALLY LOUD PEOPLE, UNHURDLED VEHICLES ON NELSON AVE.

Description of Instrumentation:

<table>
<thead>
<tr>
<th>Description of Instrumentation</th>
<th>Make</th>
<th>Model#</th>
<th>ANSI Type</th>
<th>Serial #</th>
<th>Last Certified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level Meter</td>
<td>NASH</td>
<td>1550</td>
<td>TYPE I</td>
<td>739152</td>
<td>6/11/12</td>
</tr>
<tr>
<td>Sound Level Calibrator</td>
<td>NASH</td>
<td>C6</td>
<td></td>
<td>12751</td>
<td>6/11/12</td>
</tr>
<tr>
<td>Wind Screen (yes/no)</td>
<td>Y</td>
<td>Wind Meter (y/n)</td>
<td>Y</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Time of Calibration/Battery Checks (Before, After, Every Hour)</td>
<td>1:32 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather Conditions: Precipitation (y/n)</td>
<td>N</td>
<td>Ground Wet (y/n)</td>
<td>N</td>
<td>Temperature:</td>
<td>78°F</td>
</tr>
<tr>
<td>Wind Velocity, With Time Taken</td>
<td>Y 7 MPH 1:32 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurement of Ambiant Sound:
<table>
<thead>
<tr>
<th>Time</th>
<th>Level (dB)</th>
<th>Type of Residual (source off, etc.)</th>
<th>Location of Measurement/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:45</td>
<td>5.7</td>
<td>WIND OFF</td>
<td>A</td>
</tr>
<tr>
<td>1:52</td>
<td>5.5</td>
<td>WIND OFF</td>
<td>B</td>
</tr>
<tr>
<td>1:53</td>
<td>5.6</td>
<td>WIND OFF</td>
<td>C</td>
</tr>
</tbody>
</table>

Measurement of Total Sound:
<table>
<thead>
<tr>
<th>Time</th>
<th>Level (dB)</th>
<th>Corrected (Source) Level</th>
<th>Location of Measurement/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:45</td>
<td>6.0</td>
<td>6.55</td>
<td>A</td>
</tr>
<tr>
<td>1:49</td>
<td>7.1</td>
<td>7.55</td>
<td>B</td>
</tr>
<tr>
<td>1:50</td>
<td>6.3</td>
<td>6.55</td>
<td>B</td>
</tr>
<tr>
<td>1:52</td>
<td>6.2</td>
<td>6.55</td>
<td>B</td>
</tr>
<tr>
<td>1:54</td>
<td>6.4</td>
<td>6.55</td>
<td>B</td>
</tr>
</tbody>
</table>

Findings:
- MUSIC AT 6PM VOLUME UP, 5:52-6:05:10 INCREASE INCREASE IN ANNOYING LEVELS OF 5-6 DB.
- EXCEEDANCE OF THIS LIMIT FOUND AT ALL LOCATIONS MEASURED. DEVICE IN PARK CAME UP TO ME TO COMMENT SIMILAR ABOUT CAR MODEL IN PARK.

Case Disposition:

Sound Measured By:

Report Reviewed and Approved By (If Necessary):

Include Site Sketch on Reverse (with source, walk-around route, and exact measurement locations):
Noise Measurement Report

Name/Address of Sound Source
NOISE AT MOTOR WASH
1702 LAKE OTIS PKWY
AVENUE

Date of Measurement
9/3/12
Day of Week
WED

Investigator
Name and Title of Responsible Party if Advised of Complaint:
DOE DELOREY MANAGER

Description and Location of Sound Sources to be Measured, Including Operation of Facility, and if this Represents the Normal Operation of the Facility:
- Car Wash with water jets, fans, blowers, and self-serve vacuum.

Description and Location of Neighborhood Residual Sounds, Fairly Constant in Nature (included in all measurements):
- Street traffic on Lake Otis Pkwy and C-56 Ave in distance.
- Noise from water well, game on Lake Otis.
- HVAC on northern lights.

Description and Location of Extraneous Sounds, Intermittent in Nature. Not from Source Facility (excluded from all measurements):
- Unhitched vehicles on local roads.
- All traffic on Stanford Drive, called yelling at scoring in polo game.
- On Lake Otis, parking
day.

Description of Instrumentation:
- **Make**: ANDEC
- **Model**: TYPE
- **ANSI Type**: 1
- **Serial #**: 15597
- **Last Certified**: 9/2/12
- **Wind Screen**: yes
- **Wind Meter**: Y
- **Other**:
- **Time of Calibration Battery Checks (Before, After, Every Hour)**: 7:51 AM
- **Weather Conditions**:
 - **Precipitation**: Y
 - **Ground Wet**: Y
 - **Temperature**: 57°F
 - **Wind Velocity, With Time Taken**: 2.4 MPH

Measurement of Ambient Sound:

<table>
<thead>
<tr>
<th>Time</th>
<th>Level (dB) A</th>
<th>Type of Residual (source off, etc.)</th>
<th>Location of Measurement/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:50</td>
<td>61</td>
<td>Source off</td>
<td>A</td>
</tr>
<tr>
<td>2:51</td>
<td>66</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>2:56</td>
<td>68</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

Measurement of Total Sound:

<table>
<thead>
<tr>
<th>Time</th>
<th>Level (dB) A</th>
<th>Corrected (Source) Level</th>
<th>Location of Measurement/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:46</td>
<td>68</td>
<td>68·0.2 = 66</td>
<td>A</td>
</tr>
<tr>
<td>2:47</td>
<td>69</td>
<td>69·1 = 69</td>
<td>A</td>
</tr>
<tr>
<td>2:48</td>
<td>67</td>
<td>67·2·2·6 = 74</td>
<td>A</td>
</tr>
<tr>
<td>2:52</td>
<td>74</td>
<td></td>
<td>362 F SERVICE VACUUM</td>
</tr>
<tr>
<td>2:53</td>
<td>70</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>2:54</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:55</td>
<td>70</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>2:56</td>
<td>70</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

Findings
- **CAR WASH IN VIOLATION OF 15.70.270(A) PERMISSIBLE LIMIT IS 65 DBA**, commercial service, low intensity receiver.

Case Disposition

Sound Measured By:

```
INCLUD SITE SKETCH ON REVERSE (with source, walk-around route, and exact measurement locations)
```

Report Reviewed and Approved By (If Necessary):

```
[Signature]

IM 20-047
```
This is completely fictitious.
NOISE MEASUREMENT REPORT

Name/Address of Sound Source
TUDOR C. LEVORS
712 S TUDOR RD

Date of Measurement
8/19/12 Day of Week WED

Investigator
NANCY NOVEMBER

Name and Title of Responsible Party if Advised of Complaint
IM RUCKUS, COUNTER

Description and Location of Sound Sources to beMeasured, Including Operation of Facility, and if this Represents the Normal Operation of the Facility:

Day Cleaner with Exhaust Directed At Apartment Complex, Sounds Like Steam Escaping With Loud Missing

Description and Location of Neighborhood Residual Sounds, Fairly Constant in Nature (included in all measurements):

STEAM TRAFFIC ON S. TUDOR RD, HUMAN ACTIVITY IN BACK YARD,
SUPERMARKET TAILING LOT, TIME ON RENT OF SATURN MELOD

Description and Location of Extraneous Sounds, Intermittent in Nature, Not from Source Facility (excluded from all measurements):

VEHICLES WITH ENGINE COMPRESSION BREAKS (TREE BREAKS) CAR
VOICES STEAMING IN APART FABRIC LOT

Description of Instrumentation:

<table>
<thead>
<tr>
<th>Make</th>
<th>Model</th>
<th>ANSI Type</th>
<th>Serial #</th>
<th>Last Certified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level Meter</td>
<td>KOHLKU</td>
<td>1650</td>
<td>429837A</td>
<td>6/1/12</td>
</tr>
<tr>
<td>Sound Level Calibrator</td>
<td>KESTL</td>
<td>125</td>
<td>429835A</td>
<td>6/1/12</td>
</tr>
<tr>
<td>Wind Screen (yes/no)</td>
<td>Yes</td>
<td>Wind Meter (y/n)</td>
<td>Yes</td>
<td>Other</td>
</tr>
<tr>
<td>Time of Calibration/Battery Checks (Before, After, Every Hour)</td>
<td>6:35 AM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weather Conditions:

- Precipitation (y/n): No
- Ground Wet (y/n): No
- Temperature: 64 °F
- Wind Velocity, With Time Taken: 8-10 MPH

Measurement of Ambient Sound:

<table>
<thead>
<tr>
<th>Time (dB)</th>
<th>Level (dB)</th>
<th>Type of Residual (source off, etc.)</th>
<th>Location of Measurement/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:34</td>
<td>63</td>
<td>BATHROOM BARRIER</td>
<td>B</td>
</tr>
<tr>
<td>6:35</td>
<td>63</td>
<td>SOURCE OFF</td>
<td>A PLUS CLEANER CLOSER AT 7:00 AM</td>
</tr>
</tbody>
</table>

Measurement of Total Sound:

<table>
<thead>
<tr>
<th>Time (dB)</th>
<th>Level (dB)</th>
<th>Corrected (Source) Level</th>
<th>Location of Measurement/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:34</td>
<td>72</td>
<td>72 - 1 = 71</td>
<td>A</td>
</tr>
<tr>
<td>6:35</td>
<td>72</td>
<td>72 - 1 = 71</td>
<td>A</td>
</tr>
<tr>
<td>6:36</td>
<td>72</td>
<td>72 - 1 = 71</td>
<td>A</td>
</tr>
<tr>
<td>6:37</td>
<td>72</td>
<td>72 - 1 = 71</td>
<td>A</td>
</tr>
</tbody>
</table>

Findings

CL O NER LOC AL D AT 15 TO 20 DB (A) PERMISSABLE
CL O N ER LOC AL D AT 15 TO 20 DB (A) PERMISSABLE (EXCEPT FROM COMMERCIAL SOURCE)

Case Disposition

Sound Measured By:

Include Site Sketch on Reverse (with source, walk-around route, and exact measurement locations)

Report Reviewed and Approved By (If Necessary):
knowledge of the presence of a range, adjoining parcels have been rezoned for new housing developments, giving little, if any, forethought to future consequences.

3.03.1.2 One of the primary yet often overlooked considerations in developing a range project is the economic impact the facility will have on the community. How it affects the community should it locate nearby, or if it is forced to move to another site are critical issues. Local economies are important. Even though shooting is a recreational activity, the range becomes part of the local business community. Outside activities, such as tournaments, bring outside money into the economy thereby playing an important political role in the local community.

3.03.2 Existing Conditions

3.03.2.1 What are the existing conditions at the proposed or existing site? Study the environment to determine what impact is occurring. This is the reason an environmental analysis (EA) is necessary. Conducting an EA requires a thorough review to determine if there is any reason to implement a major and costly sound abatement program. It requires a complete description of what may or may not occur if the range is built. (See Section I, Chap. 3, paragraph 2.14 for guidance and procedures for conducting an environmental analysis.)

3.03.3 Future Conditions

3.03.3.1 As a general guide, the following categories were developed by the NRA based on field and text book work:

1. Unacceptable. If the sound level exceeds 80 dB(A) for 1 hour or 24 or exceeds 85 dB(A) for 8 hours out of 24 and the receiver is less than 1/4 mile from the source.
2. Discretionary. Normally Acceptable if the level exceeds 80 dB(A) for 8 hours out of 24 or if there are "loud" impulsive sounds (referring to sonic booms, artillery, etc.) on site and the distance from the property boundary and the receiver is one mile or more.
3. Discretionary. Normally acceptable if the level does not exceed 75 dB(A) at the property boundary more than 6 hours out of 24 hours and distance from the boundary line and the receiver is over 1/4 mile.
4. Acceptable. If the sound levels at the receiver do not exceed 65 dB(A) more than 8 hours out of 24 or activities do not extend into the nighttime hours of 10 p.m. through 7 a.m.

Active shooting is to take place during the daytime hours of 7 a.m. to 10 p.m., with curtailed, but not necessarily discontinued activities during evening hours of 7 p.m. to 10 p.m. Shooting activities should not continue into nighttime hours, between 10 p.m. and 7 a.m. unless needed for mandatory low light training by law enforcement personnel.

3.03.4 Regulatory Controls

3.03.4.1 Governmental planning organizations offer services to local agencies to assist them in developing goals and policies for community "noise" control. They also provide general land use, environmental protection and open space recommendations. In July 1981, the U.S. Environmental Protection Agency developed a Community Noise Assessment Program designed to assist communities to assess, control and improve their noise environment. Even though this document focuses on larger more densely populated areas, it does provide some valuable tips for the range planner.

3.03.4.2 A number of states have laws relating to noise. Most of these noise laws are concerned with motor vehicle, snowmobile, or boating sounds. A few, such as Connecticut, Illinois, and New
1910.95(a)

Protection against the effects of noise exposure shall be provided when the sound levels exceed those shown in Table G-16 when measured on the A scale of a standard sound level meter at slow response. When noise levels are determined by octave band analysis, the equivalent A-weighted sound level may be determined as follows:
Equivalent sound level contours. Octave band sound pressure levels may be converted to the equivalent A-weighted sound level by plotting them on this graph and noting the A-weighted sound level corresponding to the point of highest penetration into the sound level contours. This equivalent A-weighted sound level, which may differ from the actual A-weighted sound level of the noise, is used to determine exposure limits from Table 1.G-16.

1910.95(b)(1)
When employees are subjected to sound exceeding those listed in Table G-16, feasible administrative or engineering controls shall be utilized. If such controls fail to reduce sound levels within the levels of Table G-16, personal protective equipment shall be provided and used to reduce sound levels within the levels of the table.

1910.95(b)(2)
If the variations in noise level involve maxima at intervals of 1 second or less, it is to be considered continuous.
TABLE G-16 - PERMISSIBLE NOISE EXPOSURES (1)

<table>
<thead>
<tr>
<th>Duration per day, hours</th>
<th>Sound level dBA slow response</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1 1/2</td>
<td>102</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>1/2</td>
<td>110</td>
</tr>
<tr>
<td>1/4 or less</td>
<td>115</td>
</tr>
</tbody>
</table>

Footnote (1) When the daily noise exposure is composed of two or more periods of noise exposure of different levels, their combined effect should be considered, rather than the individual effect of each. If the sum of the following fractions: \(C(1)/T(1) + C(2)/T(2) + \ldots + C(n)/T(n) \) exceeds unity, then the mixed exposure should be considered to exceed the limit value. \(C_n \) indicates the total time of exposure at a specified noise level, and \(T_n \) indicates the total time of exposure permitted at that level. Exposure to impulsive or impact noise should not exceed 140 dB peak sound pressure level.

1910.95(c)
"Hearing conservation program."

1910.95(c)(1)
The employer shall administer a continuing, effective hearing conservation program, as described in paragraphs (c) through (o) of this section, whenever employee noise exposures equal or exceed an 8-hour time-weighted average sound level (TWA) of 85 decibels measured on the A scale (slow response) or, equivalently, a dose of fifty percent. For purposes of the hearing conservation program, employee noise exposures shall be computed in accordance with appendix A and Table G-16a, and without regard to any attenuation provided by the use of personal protective equipment.

1910.95(c)(2)
For purposes of paragraphs (c) through (n) of this section, an 8-hour time-weighted average of 85 decibels or a dose of fifty percent shall also be referred to as the action level.

1910.95(d)
"Monitoring."
2/5/2020 1910.95 • Occupational noise exposure | Occupational Safety and Health Administration

1910.95(d)(1)(i)
When information indicates that any employee's exposure may equal or exceed an 8-hour time-weighted average of 85 decibels, the employer shall develop and implement a monitoring program.

1910.95(d)(1)(ii)
The sampling strategy shall be designed to identify employees for inclusion in the hearing conservation program and to enable the proper selection of hearing protectors.

1910.95(d)(1)(ii)
Where circumstances such as high worker mobility, significant variations in sound level, or a significant component of impulse noise make area monitoring generally inappropriate, the employer shall use representative personal sampling to comply with the monitoring requirements of this paragraph unless the employer can show that area sampling produces equivalent results.

1910.95(d)(2)(i)
All continuous, intermittent and impulsive sound levels from 80 decibels to 130 decibels shall be integrated into the noise measurements.

1910.95(d)(2)(ii)
Instruments used to measure employee noise exposure shall be calibrated to ensure measurement accuracy.

1910.95(d)(3)
Monitoring shall be repeated whenever a change in production, process, equipment or controls increases noise exposures to the extent that:

1910.95(d)(3)(i)
Additional employees may be exposed at or above the action level; or

1910.95(d)(3)(ii)
The attenuation provided by hearing protectors being used by employees may be rendered inadequate to meet the requirements of paragraph (j) of this section.

1910.95(e)
"Employee notification." The employer shall notify each employee exposed at or above an 8-hour time-weighted average of 85 decibels of the results of the monitoring.

1910.95(f)
"Observation of monitoring." The employer shall provide affected employees or their representatives with an opportunity to observe any noise measurements conducted pursuant to this section.

1910.95(g)
"Audiometric testing program."

1910.95(g)(1)
The employer shall establish and maintain an audiometric testing program as provided in this paragraph by making audiometric testing available to all employees whose exposures equal or exceed an 8-hour time-weighted average of 85 decibels.

https://www.osha.gov/laws-regulations/standardnumber/1910/1910.95
1910.95(g)(2)
The program shall be provided at no cost to employees.

1910.95(g)(3)
Audiometric tests shall be performed by a licensed or certified audiologist, otolaryngologist, or other physician, or by a technician who is certified by the Council of Accreditation in Occupational Hearing Conservation, or who has satisfactorily demonstrated competence in administering audiometric examinations, obtaining valid audiograms, and properly using, maintaining and checking calibration and proper functioning of the audiometers being used. A technician who operates microprocessor audiometers does not need to be certified. A technician who performs audiometric tests must be responsible to an audiologist, otolaryngologist or physician.

1910.95(g)(4)
All audiograms obtained pursuant to this section shall meet the requirements of Appendix C: "Audiometric Measuring Instruments."

1910.95(g)(5)
"Baseline audiogram."

1910.95(g)(5)(i)
Within 6 months of an employee's first exposure at or above the action level, the employer shall establish a valid baseline audiogram against which subsequent audiograms can be compared.

1910.95(g)(5)(ii)
"Mobile test van exception." Where mobile test vans are used to meet the audiometric testing obligation, the employer shall obtain a valid baseline audiogram within 1 year of an employee's first exposure at or above the action level. Where baseline audiograms are obtained more than 6 months after the employee's first exposure at or above the action level, employees shall wear hearing protectors for any period exceeding six months after first exposure until the baseline audiogram is obtained.

1910.95(g)(5)(iii)
Testing to establish a baseline audiogram shall be preceded by at least 14 hours without exposure to workplace noise. Hearing protectors may be used as a substitute for the requirement that baseline audiograms be preceded by 14 hours without exposure to workplace noise.

1910.95(g)(5)(iv)
The employer shall notify employees of the need to avoid high levels of non-occupational noise exposure during the 14-hour period immediately preceding the audiometric examination.

1910.95(g)(6)
"Annual audiogram." At least annually after obtaining the baseline audiogram, the employer shall obtain a new audiogram for each employee exposed at or above an 8-hour time-weighted average of 85 decibels.

1910.95(g)(7)
"Evaluation of audiogram."
Each employee’s annual audiogram shall be compared to that employee’s baseline audiogram to determine if the audiogram is valid and if a standard threshold shift as defined in paragraph (g)(10) of this section has occurred. This comparison may be done by a technician.

1910.95(g)(7)(ii)
If the annual audiogram shows that an employee has suffered a standard threshold shift, the employer may obtain a retest within 30 days and consider the results of the retest as the annual audiogram.

1910.95(g)(7)(iii)
The audiologist, otolaryngologist, or physician shall review problem audiograms and shall determine whether there is a need for further evaluation. The employer shall provide to the person performing this evaluation the following information:

1910.95(g)(7)(iii)(A)
A copy of the requirements for hearing conservation as set forth in paragraphs (c) through (n) of this section;

1910.95(g)(7)(iii)(B)
The baseline audiogram and most recent audiogram of the employee to be evaluated;

1910.95(g)(7)(iii)(C)
Measurements of background sound pressure levels in the audiometric test room as required in Appendix D: Audiometric Test Rooms.

1910.95(g)(7)(iii)(D)
Records of audiometer calibrations required by paragraph (h)(5) of this section.

1910.95(g)(8)
"Follow-up procedures."

1910.95(g)(8)(i)
If a comparison of the annual audiogram to the baseline audiogram indicates a standard threshold shift as defined in paragraph (g)(10) of this section has occurred, the employee shall be informed of this fact in writing, within 21 days of the determination.

1910.95(g)(8)(ii)
Unless a physician determines that the standard threshold shift is not work related or aggravated by occupational noise exposure, the employer shall ensure that the following steps are taken when a standard threshold shift occurs:

1910.95(g)(8)(ii)(A)
Employees not using hearing protectors shall be fitted with hearing protectors, trained in their use and care, and required to use them.

1910.95(g)(8)(ii)(B)
Employees already using hearing protectors shall be refitted and retrained in the use of hearing protectors and provided with hearing protectors offering greater attenuation if necessary.

https://www.osha.gov/laws-regulations/standardnumber/1910/1910.95
The employee shall be referred for a clinical audiological evaluation or an otological examination, as appropriate, if additional testing is necessary or if the employer suspects that a medical pathology of the ear is caused or aggravated by the wearing of hearing protectors.

1910.95(g)(8)(ii)(D)
The employee is informed of the need for an otological examination if a medical pathology of the ear that is unrelated to the use of hearing protectors is suspected.

1910.95(g)(8)(iii)
If subsequent audiometric testing of an employee whose exposure to noise is less than an 8-hour TWA of 90 decibels indicates that a standard threshold shift is not persistent, the employer:

1910.95(g)(8)(iii)(A)
Shall inform the employee of the new audiometric interpretation; and

1910.95(g)(8)(iii)(B)
May discontinue the required use of hearing protectors for that employee.

1910.95(g)(9)
"Revised baseline." An annual audiogram may be substituted for the baseline audiogram when, in the judgment of the audiologist, otolaryngologist or physician who is evaluating the audiogram:

1910.95(g)(9)(i)
The standard threshold shift revealed by the audiogram is persistent; or

1910.95(g)(9)(ii)
The hearing threshold shown in the annual audiogram indicates significant improvement over the baseline audiogram.

1910.95(g)(10)
"Standard threshold shift."

1910.95(g)(10)(i)
As used in this section, a standard threshold shift is a change in hearing threshold relative to the baseline audiogram of an average of 10 dB or more at 2000, 3000, and 4000 Hz in either ear.

1910.95(g)(10)(ii)
In determining whether a standard threshold shift has occurred, allowance may be made for the contribution of aging (presbycusis) to the change in hearing level by correcting the annual audiogram according to the procedure described in Appendix F: "Calculation and Application of Age Correction to Audiograms."

1910.95(h)
"Audiometric test requirements."

1910.95(h)(1)
Audiometric tests shall be pure tone, air conduction, hearing threshold examinations, with test frequencies including as a minimum 500, 1000, 2000, 3000, 4000, and 6000 Hz. Tests at each frequency shall be:

https://www.osha.gov/laws-regulations/standardnumber/1910/1910.95
1910.95(h)(2)
Audiometric tests shall be conducted with audiometers (including microprocessor audiometers) that meet the
specifications of, and are maintained and used in accordance with, American National Standard Specification for
Audiometers, S3.6-1969, which is incorporated by reference as specified in Sec. 1910.6.

1910.95(h)(3)
Pulsed-tone and self-recording audiometers, if used, shall meet the requirements specified in Appendix C:
"Audiometric Measuring Instruments."

1910.95(h)(4)
Audiometric examinations shall be administered in a room meeting the requirements listed in Appendix D:
"Audiometric Test Rooms."

1910.95(h)(5)
"Audiometer calibration."

1910.95(h)(5)(i)
The functional operation of the audiometer shall be checked before each day's use by testing a person with
known, stable hearing thresholds, and by listening to the audiometer's output to make sure that the output is
free from distorted or unwanted sounds. Deviations of 10 decibels or greater require an acoustic calibration.

1910.95(h)(5)(ii)
Audiometer calibration shall be checked acoustically at least annually in accordance with Appendix E: "Acoustic
Calibration of Audiometers." Test frequencies below 500 Hz and above 6000 Hz may be omitted from this
check. Deviations of 15 decibels or greater require an exhaustive calibration.

1910.95(h)(5)(iii)
An exhaustive calibration shall be performed at least every two years in accordance with sections 4.1.2; 4.1.3.;
4.1.4.3; 4.2; 4.4.1; 4.4.2; 4.4.3; and 4.5 of the American National Standard Specification for Audiometers, S3.6-
1969. Test frequencies below 500 Hz and above 6000 Hz may be omitted from this calibration.

1910.95(i)
"Hearing protectors."

1910.95(i)(1)
Employers shall make hearing protectors available to all employees exposed to an 8-hour time-weighted
average of 85 decibels or greater at no cost to the employees. Hearing protectors shall be replaced as
necessary.

1910.95(i)(2)
Employers shall ensure that hearing protectors are worn:

1910.95(i)(2)(i)
By an employee who is required by paragraph (b)(1) of this section to wear personal protective equipment; and
By any employee who is exposed to an 8-hour time-weighted average of 85 decibels or greater, and who:

1910.95(i)(2)(ii)(A) Has not yet had a baseline audiogram established pursuant to paragraph (g)(5)(ii); or

1910.95(i)(2)(ii)(B) Has experienced a standard threshold shift.

1910.95(i)(3) Employees shall be given the opportunity to select their hearing protectors from a variety of suitable hearing protectors provided by the employer.

1910.95(i)(4) The employer shall provide training in the use and care of all hearing protectors provided to employees.

1910.95(i)(5) The employer shall ensure proper initial fitting and supervise the correct use of all hearing protectors.

1910.95(j) "Hearing protector attenuation."

1910.95(j)(1) The employer shall evaluate hearing protector attenuation for the specific noise environments in which the protector will be used. The employer shall use one of the evaluation methods described in Appendix B: “Methods for Estimating the Adequacy of Hearing Protection Attenuation.”

1910.95(j)(2) Hearing protectors must attenuate employee exposure at least to an 8-hour time-weighted average of 90 decibels as required by paragraph (b) of this section.

1910.95(j)(3) For employees who have experienced a standard threshold shift, hearing protectors must attenuate employee exposure to an 8-hour time-weighted average of 85 decibels or below.

1910.95(j)(4) The adequacy of hearing protector attenuation shall be re-evaluated whenever employee noise exposures increase to the extent that the hearing protectors provided may no longer provide adequate attenuation. The employer shall provide more effective hearing protectors where necessary.

1910.95(k) "Training program."

1910.95(k)(1) The employer shall train each employee who is exposed to noise at or above an 8-hour time-weighted average of 85 decibels in accordance with the requirements of this section. The employer shall institute a training program and ensure employee participation in the program.
1910.95(k)(2)
The training program shall be repeated annually for each employee included in the hearing conservation program. Information provided in the training program shall be updated to be consistent with changes in protective equipment and work processes.

1910.95(k)(3)
The employer shall ensure that each employee is informed of the following:

1910.95(k)(3)(i)
The effects of noise on hearing;

1910.95(k)(3)(ii)
The purpose of hearing protectors, the advantages, disadvantages, and attenuation of various types, and instructions on selection, fitting, use, and care; and

1910.95(k)(3)(iii)
The purpose of audiometric testing, and an explanation of the test procedures.

1910.95(l)
"Access to information and training materials."

1910.95(l)(1)
The employer shall make available to affected employees or their representatives copies of this standard and shall also post a copy in the workplace.

1910.95(l)(2)
The employer shall provide to affected employees any informational materials pertaining to the standard that are supplied to the employer by the Assistant Secretary.

1910.95(l)(3)
The employer shall provide, upon request, all materials related to the employer's training and education program pertaining to this standard to the Assistant Secretary and the Director.

1910.95(m)
"Recordkeeping."

1910.95(m)(1)
"Exposure measurements." The employer shall maintain an accurate record of all employee exposure measurements required by paragraph (d) of this section.

1910.95(m)(2)
"Audiometric tests."

1910.95(m)(2)(i)
The employer shall retain all employee audiometric test records obtained pursuant to paragraph (g) of this section.
This record shall include:

- **(A)** Name and job classification of the employee;
- **(B)** Date of the audiogram;
- **(C)** The examiner’s name;
- **(D)** Date of the last acoustic or exhaustive calibration of the audiometer; and
- **(E)** Employee’s most recent noise exposure assessment.

The employer shall maintain accurate records of the measurements of the background sound pressure levels in audiometric test rooms.

"Record retention." The employer shall retain records required in this paragraph (m) for at least the following periods:

- **(i)** Noise exposure measurement records shall be retained for two years.
- **(ii)** Audiometric test records shall be retained for the duration of the affected employee's employment.

"Access to records." All records required by this section shall be provided upon request to employees, former employees, representatives designated by the individual employee, and the Assistant Secretary. The provisions of 29 CFR 1910.1020 (a)-(e) and (g)-(i) apply to access to records under this section.

"Transfer of records." If the employer ceases to do business, the employer shall transfer to the successor employer all records required to be maintained by this section, and the successor employer shall retain them for the remainder of the period prescribed in paragraph (m)(3) of this section.

"Appendices."
Appendices A, B, C, D, and E to this section are incorporated as part of this section and the contents of these appendices are mandatory.

1910.95(n)(2)
Appendices F and G to this section are informational and are not intended to create any additional obligations not otherwise imposed or to detract from any existing obligations.

1910.95(o)
"Exemptions." Paragraphs (c) through (n) of this section shall not apply to employers engaged in oil and gas well drilling and servicing operations.

ORDINANCE
AN ORDINANCE OF THE MATANUSKA-SUSITNA BOROUGH ASSEMBLY ADOPTING MSB 17.68 OUTDOOR SHOOTING FACILITIES IN ORDER TO ESTABLISH STANDARDS FOR COMMERCIAL, EDUCATIONAL, AND NONPROFIT OUTDOOR SHOOTING FACILITIES.

WHEREAS, the rationale and intent of this ordinance are found in IM NO. 20-047 which accompanies this ordinance.

BE IT ENACTED:

Section 1. Classification. This ordinance is of a general and permanent nature and shall become a part of the Borough Code.

Section 2. Adoption of Chapter. MSB 17.68 is hereby adopted as follows:

17.68 OUTDOOR SHOOTING FACILITIES

17.68.010 INTENT

17.68.020 DEFINITIONS

17.68.030 APPLICABILITY

17.68.040 APPLICATION PROCEDURES

17.68.050 GENERAL STANDARDS

17.68.060 OPERATING STANDARDS

17.68.070 APPEALS

17.68.080 TERMINATION OF PERMIT
17.68.010 INTENT

(A) It is the intent of this chapter to allow outdoor shooting facilities to operate within the Borough while minimizing the likelihood that people, domestic animals, or properties will be jeopardized.

17.68.020 DEFINITIONS

(A) For the purpose of this chapter, the following definitions shall apply unless the context clearly indicates or requires a different meaning.

“Outdoor Shooting Facility” means real property used for commercial, educational, or non-profit shooting activities, typically involving rifles, shotguns, pistols, silhouettes, skeet, trap or black powder.

“Firing Position (Point)” means an area where firearms are discharged, having a specified width and depth that is occupied by a shooter, their equipment and, if appropriate, an instructor.

“Firing Lane” means the expected path of gunfire from the firing position to the target.
“Firing Line” means a line parallel to the targets behind which firearms are discharged.

“Surface Danger Zone (SDZ)” means a depiction of the mathematically predicted area a projectile will return to earth either by direct fire or by ricochet. The SDZ is the area extending from a firing point to a distance downrange based on the projectiles fired.

17.68.030 APPLICABILITY

(A) This chapter applies in all areas of the Borough including special land use districts and residential land use districts. Where this chapter is in conflict with the conditions of a special land use district or residential land use district, the most restrictive conditions shall apply.

(B) This chapter does not apply within the cities of Houston, Palmer, or Wasilla.

(C) This chapter applies to all outdoor shooting facilities except outdoor shooting facilities that are used exclusively for:

(a) archery or air guns;

(b) law enforcement or United States Military purposes; or
(c) fully enclosed facilities designed to offer a completely controlled shooting environment.

(D) This chapter does not regulate the discharge of firearms on private property where the property is not open to the public on a commercial, education, nonprofit, or membership basis.

17.68.040 APPLICATION PROCEDURES

(A) An application for an outdoor shooting facility permit may be initiated by a property owner or the owner’s authorized agent and shall be filed on a form provided by the Borough.

(1) The application for an outdoor shooting facility permit shall be accompanied by an appropriate filing fee as established by the assembly, payable to the Borough.

(2) The application shall include the following:

(a) a certified site plan drawn to scale showing a complete layout of the range including location of backstops, firing lanes, firing positions, firing lines, side berms, target areas, and baffles;
(b) identification of all buildings within 1,000 feet of the firing positions;

(c) dimensions and construction materials of all backstops, baffles, firing lanes, and side berms; and

(d) maximum caliber of firearm to be allowed at the range, if any.

(e) certification by a professional civil engineer or other qualified professional registered in the state of Alaska under AS 08.48 that the facility is designed to meet the requirements of 17.68.050(A)(2)-(3).

(g) Surface danger zones as determined by a professional engineer registered in the state of Alaska under AS 08.48.

(B) The director or designated staff shall determine whether an application for an outdoor shooting facility is complete. The director shall provide the
applicant with a written explanation of application deficiencies within 10 working days of the date the application is received.

(C) Notification for outdoor shooting facilities shall be in accordance with MSB 17.03, public notification, except that the notification area will be one-half mile.

(D) Within 45 calendar days of receipt of a complete application the director shall approve the permit upon determination that the standards of this chapter have been met.

17.68.050 GENERAL STANDARDS

(A) In granting a permit under this chapter, the director shall make findings that all of the following standards have been met:

(1) Firing positions are located at least one thousand feet from all habitable buildings which are not on the same parcel.

(a) This standard only applies to buildings which were in existence at the time that application was made for the outdoor shooting facility.
(2) There are no habitable buildings within the surface danger zone.

(3) The proposed backstops are a minimum of twenty feet in height and are constructed behind all targets. The backstops shall be:

 (a) impenetrable to all calibers used at the facility;

 (b) designed to contain all projectiles within the designated shooting area;

 (c) constructed of material that does not cause unintended ricochet of projectiles; and

 (d) connected to each side berm.

(4) The proposed side berms shall:

 (a) be constructed parallel to firing lanes:

 (b) extend the length of the firing lanes, from the backstop to the firing line;

 (c) be a minimum of eight feet in height;

 (d) be designed to contain all projectiles within the designated shooting area;
(e) be impenetrable to all calibers used at the facility;

(f) be constructed of material that does not cause unintended ricochet of projectiles.

(5) The director may waive the requirement for side berms if it is determined they are not necessary because of natural topographic features.

(6) Shotgun-only ranges are exempt from paragraphs (3) through (5) of this subsection.

(7) Outdoor shooting facilities may not be designed in a manner that directs projectiles into or over waterbodies or wetlands.

17.68.060 OPERATING STANDARDS

(A) Hours of operation shall not to exceed 8:00 AM - 9:00 PM.

(B) No sound resulting from the outdoor shooting facility is allowed to exceed 90 dB(a) as measured at or within the boundary of the property of the receiving land.

17.68.070 APPEALS
(A) Appeals from a decision of the director granting or denying a permit under this chapter shall be filed and conducted in accordance with MSB 15.39.

17.68.080 TERMINATION OF PERMIT

(A) Except as otherwise specified by code, a permit issued under this chapter will become null and void under the following conditions:

(1) notification of termination of the permit for failure to comply with an order to correct violations of a permit;

(2) failure to initiate the use for which the permit was issued within five years of the date of the permit issuance;

(3) cessation of the use for which the permit was issued for a period exceeding five consecutive years.

17.68.090 TRANSFER OF PERMIT

(A) Except as otherwise specified by code, the privileges and requirements of a permit issued under this chapter shall run with the land.
(B) Within 90 days of recording the transfer of ownership of the subject land, the new owner must provide written notification and a signed acknowledgment that the new owner assumes responsibility for compliance with the requirements of the permit.

17.68.100 NONCONFORMING USES

(A) Within the borough there may be outdoor shooting facilities that have commenced actual construction or are in existence as of the effective date of this chapter. Such facilities which were lawful before the effective date of this chapter, but which would otherwise be prohibited, regulated or restricted under this chapter, are allowed to continue but shall not be expanded except as provided in this chapter.

(B) No nonconforming use shall be constructed or operated except in accordance with these regulations, except to the extent it was in existence or under actual construction as of the effective date of the ordinance codified herein or amendment thereto.

17.68.110 VIOLATIONS, ENFORCEMENTS, AND PENALTIES

(A) Remedies, enforcement actions, and penalties shall be consistent with the terms and provisions of MSB
1.45.

(B) In addition to other applicable penalties, failure to correct the violation of code, after reasonable notice, may result in revocation of the permit.

(C) Complaints received by the Borough of violations of state or federal law will be forwarded to the appropriate agency for enforcement.

(D) Authorized representatives of the borough shall be allowed to inspect the site and related records at reasonable times for the purpose of monitoring compliance with all permit conditions.

(E) The permittee shall assist and cooperate with authorized inspections upon reasonable notice from the borough.

Section 3. Effective date. This ordinance shall take effect upon adoption.

ADOPTED by the Matanuska-Susitna Borough Assembly this - day of -, 2020.

VERN HALTER, Borough Mayor

ATTEST:
COMMENTS
From: timothy clark <1tjc1968@gmail.com>
Sent: Thursday, February 20, 2020 11:41 AM
To: Permit Center <Permit.Center@matsugov.us>
Subject: Stop the shooting, please.

[EXTERNAL EMAIL - CAUTION: Do not open unexpected attachments or links.]
There are already enough ranges in the valley. We do not want one at Jonesville mine. Don't let a minority of heavily armed jerk offs dictate policy.
The Shooting Facility Ordinance will end future shooting ranges in the Mat Su Borough. It's already difficult to develop a shooting range without an Ordinance. The Youth Shooting group has been trying to find land since 2015, for a place to train for youth shooting sports. No one will develop a shooting range, knowing that the Mat-Su Borough has the power to pull the shooting facility permit at anytime. By implementing an Outdoor Shooting Facility Ordinance will only create more problems in the Mat Su Borough. Shooting Facilities provide a safe environment and education, please do not take this away by creating the Outdoor Shooting Facility Ordinance.

Sincerely yours,

Esther Huddleston
aehuddleston@outlook.com
Hi Mary:

Questions for Staff - Alex/Eileen

The adopted Assembly Resolution 19-083 specifies that the Assembly requested that staff develop a "conditional use permit process for commercial, educational, and nonprofit outdoor shooting facilities to be reviewed by the Planning Commission..."

On page 19 of our current PC packet (page 4 of 5 of IM No. 20-047) it states:

"A major change from the original draft ordinance is the permit type has been changed to an administrative permit."

Did the Assembly give a new directive?
If so, where is that documented?
If not, why are we looking at an administrative permit versus CUP process as they directed?

Thanks,

Mary Anderson
District 1

--

Mary P. Anderson
MSB Planning Commissioner
District #1
[EXTERNAL EMAIL - CAUTION: Do not open unexpected attachments or links.]

I wish to reiterate my opposition to this ordinance. Based on the article in the Frontiersman (Outdoor shooting range ordinance passes Mat-Su Borough Assembly 4-3, referred to Planning Commission) it is clear that what constitutes a commercial shooting range in the eyes of the Borough (testing guns on private property by Mr. Howard) is far from what I or others would consider a commercial shooting range. Also, I do not believe the Borough has the expertise to regulate or inspect any ranges. As a result, the normal response will most likely be to simply deny the permit. This will also impact current ranges by denying them the ability to expand. Overall, this is a piece of legislation that is contrary to my expectations of living in the Valley.

How exactly will the Borough inspect the ranges? Where will they get the expertise? What liability will the Borough assume if they do allow a range and there is an accident there?

Again, I reiterate I am opposed to this ordinance.

Troy Henley
Big Lake, AK

Borough Assembly 4-3, ref...
Tim Rockey Frontiersman.com
PALMER — To the dismay of many in a massive agitated group of residents who had gathered at the Mat-Su Borough A...
From: Ellen VV <evvisse@gmail.com>
Sent: Thursday, March 5, 2020 8:04 PM
To: Legislative Comments <Legislative.Comments@matsugov.us>
Cc: Kim Sollien <Kim.Sollien@matsugov.us>; Christopher Cole <Christopher.Cole@matsugov.us>; Theodore Eischeid <Ted.Eischeid@matsugov.us>; Karol Riese <Karol.Riese@matsugov.us>; Pam Graham <Pam.Graham@matsugov.us>; Adam Bradway <Adam.Bradway@matsugov.us>
Subject: public input re Shooting Ranges

[EXTERNAL EMAIL - CAUTION: Do not open unexpected attachments or links.]

Date: March 4, 2020
To: Members of the Mat-Su Borough
From: Ellen Vande Visse, Mat-Su resident
Re: Shooting Ranges

Hard-working Assembly Members,

(and cc to Planning Commission),

I write to each of you regarding the public comments and consideration of shooting ranges.

This is a follow up to the evening public comment session on Feb 18, and I wish I could have written to you a bit sooner.

I am very sorry that you as assembly members and as individuals were treated with such brash disrespect. You work hard to study issues and do the best for us, and certainly intimidating attacks do not feel good. You show up to listen and consider. You think about the best for our diverse population. Thank you for being present through difficult and unappreciated situations!

If I were from Outer Space and not vested in any particular group or viewpoint, but just looking in at the emotional tone of that public meeting, I would see that

1. There was a small group of people, bunched together. They were very loud, disrespectful, highly opinionated, highly fearful people who did not come together to listen, reason, or consider what are the problems and possibilities. Rather, they came to out-shout, intimidate, and shut down discussion. When asked twice to behave respectfully and not cheer, clap, etc., they continued with rebellious distain for decorum. Does rude, disruptive, uncivil behavior count as democratic public input?

2. There was another group of people, sprinkled around the room. They were quiet, respectful, had concerns to express, and were open to finding solutions. They did not use juvenile tactics of cheering, clapping, and intimidating.
I’m wondering which you listen to. I’m wondering which you think you have to accommodate. I’m wondering if this contentiousness makes you want to avoid and dismiss the issues. I’m wondering what you consider your responsibility for good leadership for the highest good of all. I’m praying that you are not caught in My Side-Your Side traps. I’m hoping you are wanting to find mature solutions to very real problems.

So I add my thoughts.

Yes, I understand that you referred a draft gun range ordinance to the Planning Commission for its input. Thank you. These comments are for you AND please pass my comments on to Planning Commission members as well.

CITIZEN CONCERNS

As a Mat-Su resident since 1985, I ask that you take it seriously when some 200+ Valley residents sign a petition. These folks are simply asking for some regulating of commercial gun ranges. Who wants their property values, peace & quiet ruined forever by seeing a shooting range plunk down next door, with no recourse for moderating noise, hours, safety, structures, and neighborhood disruption?

SAFETY

There are places, such as Sutton/Jonesville area, that are not safe. I do not dare venture in to enjoy our great outdoors when I live in dread of a stray bullet, and can’t enjoy nature when it sounds like a war zone. The lands are badly degraded by shooters and torn up land from ORV’s, trash, junk vehicles, abused land.

So a gun range would help take the pressure off these shoot-em-up areas. A shooting range would help if built with public safety in mind.

GOV’T OVERREACH?

No, that is the reason why we have government. We come together to figure out the best for the most.

Thus you can drive an auto, but you need training and a license. You need to follow speed limits for the safety of all.

You can mine gravel, but not under homes, not at 2am, not harming our shared ecosystem.

You can do construction, but not in a way that leaves untrustworthy foundations & roofs. Not in a way that leaves owners unsafe.

This is the job of government, not “over-reach”.

The days of complete selfishness “to do what I want & the heck with others” is over in a Borough that is now full of residents -- 110,000 of them and growing.

SECOND AMENDMENT RIGHTS

Since when is a RIGHT to shoot anywhere at any time and not be responsible for your bullets? That normally is called irresponsible use of a firearm. It could also be called murder, if your stray bullet hits a person.

A gun range, with reasonable rules of operation, is a freedom. It protects the public safety. It protects our investment in a home or business. This is about land use and property values.

Land use regulations have NOTHING TO DO with the right to bear arms.

No one is proposing taking away anybody’s gun. Bear all the arms you want.

In this beautiful Borough that we share, I am looking for reasonable consideration of my rights to walk, hike, ski, without fear of being shot.

Thank you all for putting real heart and thoughtfulness into workable solutions for:
1. a safety dilemma of wanton shooting and
2. a property tax payer dilemma of losing resale value (financial) and sanity by unregulated gun range potentials.

Give us some basic protections.

Thank you,
concerned citizen E. VandeVisse
A RESOLUTION OF THE MATANUSKA-SUSITNA BOROUGH PLANNING COMMISSION RECOMMENDING ASSEMBLY ADOPTION OF MSB 17.68, OUTDOOR SHOOTING FACILITIES, IN ORDER TO ESTABLISH STANDARDS FOR COMMERCIAL, EDUCATIONAL, AND NONPROFIT OUTDOOR SHOOTING FACILITIES.

WHEREAS, on February 18, 2020, the Matanuska-Susitna Borough Assembly referred Ordinance 20-025 for Planning Commission review for 90 days; and

WHEREAS, the Planning Commission finds that potential negative impacts associated with outdoor shooting facilities include stray bullets, lead contamination, and harmful levels of noise; and

WHEREAS, lead from improperly managed shooting ranges can be dissolved or carried by stormwater, can migrate through soil, and can be carried long distances in solution by groundwater; and

WHEREAS, exposure to very low concentrations of lead can have dangerous effects to infants and children; and

WHEREAS, Ordinance 20-25 provides protection from lead contamination by requiring a site-specific environmental stewardship plan for managing shooting-associated materials; and

WHEREAS, stray bullets are a safety concern for improperly designed shooting ranges; and
WHEREAS, Ordinance 20-25 requires new outdoor shooting facilities be designed in a manner that minimizes the risk to neighboring property from stray bullets; and

WHEREAS, potentially harmful levels of noise may occur with poorly located outdoor shooting facilities; and

WHEREAS, excessive noise disrupts sleep and can cause an assortment of impacts on human health including physiological impacts such as elevated blood pressure, faster heart rates, increased neuroendocrine hormone levels; and

WHEREAS, Ordinance 20-25 addresses potentially harmful levels of noise by requiring setbacks from habitable buildings, limiting hours of operation, and establishing maximum noise levels on surrounding properties.

NOW, THEREFORE, BE IT RESOLVED, that the Matanuska-Susitna Borough Planning Commission hereby recommends approval of Assembly Ordinance 20-025.
ADOPTED by the Matanuska-Susitna Borough Planning Commission
this ___ day of ___, 2020.

COLLEEN VAGUE, Chair

ATTEST

MARY BRODIGAN, Planning Clerk
(SEAL)

YES:

NO:
COMMISSION BUSINESS

Upcoming PC Agenda Items

(Page 337 - 342)
MEMORANDUM

DATE: March 6, 2020

TO: Planning Commissioners

FROM: Eileen Probasco, Director of Planning and Land Use

SUBJECT: Items tentatively scheduled for future PC Meetings or Administrative Actions and Updates on PC items sent to the Assembly

April 6, 2020 (MSB Assembly Chambers)

Introduction for Public Hearing Quasi-Judicial

(None)

Introduction for Public Hearing Legislative

(None)

Agency/Staff Reports

(None)

Land Use Classifications

• Resolution PC 20-11, recommending Assembly approval of land classification of two parcels as Reserved Use for a future fire station and future school facilities, and eight parcels for conveyance through borough land sales or other allowed methods of disposal in accordance with Title 23 and adopted Land & Resource Management Policy and Procedures (MSB007557). (Staff: Nancy Cameron)

Public Hearing Quasi-Judicial

• Resolution PC 20-08, a Conditional Use Permit request in accordance with MSB 17.60 – Conditional Uses, for the operation of a marijuana cultivation facility, located at 108 E. Schrock Road (Tax ID# 18N01W15C009); within Township 18 North, Range 1 West, Section 15, Seward Meridian. (Applicant: Michael Gallagher, on behalf of Bubba Greens, Staff: Joe Metzger)

• Resolution PC 20-09, a Conditional Use Permit request in accordance with MSB 17.60 – Conditional Uses, for the operation of a marijuana retail facility, located at 5675 E. Blue Lupine Drive (Tax ID# 1807B01L011); within Township 17 North, Range 1 East, Section 17, Seward Meridian. (Applicant: Chad Ragsdale, on behalf of MCC Flight, Staff: Joe Metzger)
Public Hearing Legislative
(None)

Unfinished Business
(None)

New Business
(None)

Commission Business
• Adjudicatory *(if needed)*
• Upcoming Planning Commission Agenda Items *(Staff: Alex Strawn)*

April 20, 2020 *(MSB Assembly Chambers)*

Introduction for Public Hearing Quasi-Judicial
(None)

Introduction for Public Hearing Legislative
(None)

Agency/Staff Reports
(None)

Land Use Classifications
(None)

Public Hearing Quasi-Judicial
(None)

Public Hearing Legislative
(None)

Unfinished Business
(None)

New Business
(None)

Commission Business
• Adjudicatory *(if needed)*
• Upcoming Planning Commission Agenda Items *(Staff: TBD)*
Upcoming PC Actions

Quasi-Judicial

- Alaska Car Crushing – Junkyard CUP Modification, 6919000L001 and L002. (Staff: Mark Whisenhunt)
- D&S Alaskan Trail Rides, Inc. – Denali SpUD, 29N05W33D012 and 29N05W33D0028. (Staff: Joe Metzger)
- Nu Aspen LLC – Talkeetna SpUD, 5352B12L014A. (Staff: Joe Metzger)
- Nu Aspen LLC – Regulation of Alcoholic Beverages, 5352B12L014A. (Staff: Joe Metzger)
- Canna Get Happy – Marijuana Retail Facility, 17N01W11A020. (Staff: Joe Metzger)
- Arctic Hydroponics - Marijuana Cultivation Facility, 22N04W01A004. (Staff: Mark Whisenhunt)
- Moonstone Farm – Alcoholic Beverage Dispensary, 17N01E16C012. (Staff: Mark Whisenhunt)
- Twin Lakes – Variance MSB 17.65, 6323000L005. (Staff: Mark Whisenhunt)

Legislative

- Subdivision Construction Manual 2020 (Staff: Eileen Probasco)
- MSB 11.12 Driveway Standards (Staff: Alex Strawn)
- Title 17 Consolidation (Staff: Eileen Probasco)
- Onsite Consumption (Staff: Alex Strawn)
- Wetlands Mitigation (Staff: Eileen Probasco)

Other Upcoming Administrative Actions (Not going to the PC)

- Aldeman – Multifamily Permit; 17N01W18B011. (Staff: Joe Metzger)
- Birdsell #1 – Nonconforming Structures, 6040B03L016. (Staff: Joe Metzger)
- Donald Patterson – Multifamily Development Permit, 1009B02L011. (Staff: Adam Bradway)
- Hinderman - Nonconforming Structures, 6043B01L006. (Staff: Joe Metzger)
- Carefree Acres – Multifamily Development Permit, 1009B02L011. (Staff: Adam Bradway)
- Finger Lakes Heights – Nonconforming Structures, 6111000T003. (Staff: Joe Metzger)
- Trapper Creek Bluegrass Festival – Special Event, 25N05W15C003. (Staff: Joe Metzger)
- Prospect Peak – Nonconforming Structures, 2350B02L008. (Staff: Mark Whisenhunt)
- Beaver Green – Nonconforming Structures, 6024000L013. (Staff: Joe Metzger)
- Bridgeway Community – Multifamily Development Permit, 17N02W11B005. (Staff: Joe Metzger)
- Ashmore – Nonconforming Structures, 18N01E34A001. (Staff: Joe Metzger)
- LaLonde – Pre-existing Legal Nonconforming Status Determination – 6363B01L006A-2. (Staff: Joe Metzger)
• Great Alaska Cannabis Bowl – Temporary Noise Permit, 7717000T00L-1C. (Staff: Mark Whisenhunt)

• Great Alaska Cannabis Bowl – Special Event Permit, 7717000T00L-1C. (Staff: Mark Whisenhunt)

PC Decisions Currently Under Appeal

- **Resolution 18-30**, a Conditional Use Permit (CUP) in accordance with MSB 17.60 – Conditional Uses; allowing the operation of a junkyard/refuse area, located at 743 West Sunrise Drive (Tax ID#: 640500L006); within Township 18 North, Range 2 West, Section 33, Seward Meridian. Appealed to Alaska Superior Court. *(Applicant: Dewayne Creech for Creech’s Junkyard, Staff: Mark Whisenhunt)*

- **Resolution PC 19-17**, a Conditional Use Permit in Accordance with MSB 17.60 – Conditional Uses; allowing for the operation of a marijuana retail facility, located at 1204 N. Hyer Spur (Tax ID# 7775000L002); within Township 17 North, Range 1 East, Section 4, Seward Meridian. Appealed to the BOAA. Planning Commission decision upheld by BOAA on September 11, 2019. Appealed to Alaska Superior Court. *(Applicant: Teri Zell, on behalf of Higher By Bad Gramm3r, LLC; Staff: Joe Metzger)*

- **Resolution PC 19-18**, a conditional use permit in accordance with MSB 17.30, Conditional Use Permit for Earth Material Extraction, located at 56218 S. Parks Highway (Tax ID# 22N04W06B003); within Township 22 North, Range 4 West, Section 6, Seward Meridian. A CUP would allow for the removal of approximately 1,000,000 cubic yards of earth materials through 2029. The Planning Commission failed to garner enough votes to approve the permit. Planning Commission decision overturned by the BOAA on October 29, 2019. Appealed to Alaska Superior Court. *(Applicant: Emily McDonald on behalf of Don Jean Pit, Staff: Joe Metzger)*

Updates on PC items going to the Assembly (Pending)

None

Updates on PC items that went to the Assembly (Complete)

<table>
<thead>
<tr>
<th>Planning Commission</th>
<th>Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution PC 19-25, recommending assembly approval of an Aviation Activity Notice Area in accordance with MSB 17.10.110, known as Wasilla Creek Airpark; within Township 18 North, Range 1 East, Section 12, Tract B (Tax ID# 740400T00B), Seward Meridian; 7555 E. Nangle Street. (Staff: Christopher Cole)</td>
<td>ORD # 20-011</td>
</tr>
<tr>
<td>Actions:</td>
<td>Actions:</td>
</tr>
<tr>
<td>11/18/19 – PC Introduction</td>
<td>11/18/19 – PC Introduction</td>
</tr>
<tr>
<td>12/16/19 – PC Public Hearing – Amended/Approved</td>
<td>12/16/19 – PC Public Hearing – Amended/Approved</td>
</tr>
<tr>
<td>01/21/20 – Assembly Introduction</td>
<td>01/21/20 – Assembly Introduction</td>
</tr>
<tr>
<td>02/04/20 – Assembly Public Hearing - Failed</td>
<td>02/04/20 – Assembly Public Hearing - Failed</td>
</tr>
</tbody>
</table>